跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱是鍇
研究生(外文):CHU, SHIH-KAI
論文名稱:控制FDR多重檢定法的比較
論文名稱(外文):Evaluations of FDR controlling methods in multiple hypothesis testing
指導教授:黃怡婷黃怡婷引用關係
指導教授(外文):HWANG, YI-TING
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:多重檢定型一誤差率檢定力專一性敏感性
外文關鍵詞:Multiple TestingType I Error RatePowerFDRSpecificitySensitivityFNDRFWER
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1491
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:0
在同時檢定多於一個統計假設(多重檢定)的時候, 研究者遭遇到的重要課題之一就是力求在控制型一誤差率(錯誤拒絕率)的同時, 使得檢定力(正確拒絕率)最高。 自Benjamini and Hochberg 於1995 年提出以False Discovery Rate (FDR) 控制多重檢定問題的型一誤差率後, 近年來許多學者們提出新的檢定方法,使得型一誤差控制在FDR下之餘, 也提供較大的檢定力。 然而, 處在不斷有新方法追求更高的檢定力的當下, 在各法中檢視其專一性, 敏感性等檢定結果正確率與False Non-Discovery Rate (FNDR) , Family-Wise Error Rate (FWER) 等檢定產生的誤差率也是刻不容緩的事。 本研究將以各控制FDR檢定方法為基礎, 在突破檢定方法的檢定統計量間獨立等統計假設與討論其他如統計假設個數,樣本數, 真實虛無假設比例等相關參數的更動下, 以統計模擬方法綜合比較其專一性, 敏感性, FNDR, FDR, FWE等, 並以各種角度來檢視各法適用時機, 以求自其中求得修FDR檢定方法的新方向。
One of the important tasks researchers would encounter in multiple testing is to control the Type I Error Rate at the desired level and to maximize the power at the same time. Since Benjamini and Hochberg (1995) proposed using False Discovery Rate (FDR) to control the Type I Error Rate, researchers have proposed many new FDR controlling procedures that are more powerful in specific circumstances. Although new procedures have been developed constantly for higher power, evaluating the rate of correct testing result, such as specificity, sensitivity, and the rate of wrong testing result, such as False Non-Discovery Rate (FNDR), Family-Wise Error Rate (FWER), also demand immediate attention. On the basis of seven FDR controlling procedures, this thesis presents Monte Carlo simulations to evaluate these testing procedures using specificity, sensitivity, FNDR, FDR and FWER under various related parameters, such as number of null hypothesis, sample size, proportion of true null hypotheses. Moreover, the situation when test statistics are correlated is considered as well. These seven testing procedures are evaluated in various aspects. Simulation results reveal that different testing procedures perform differently in specificity, sensitivity, FNDR and FWER. Researchers should choose an appropriate testing procedure based on their specific research aim.
第一章 前言 9
第二章 研究方法 11
2.1 背景 11
2.2 多重假設檢定方法 12
第三章 統計模擬 16
3.1 虛無假設的設定與資料生成方式 16
3.2 檢定統計量的設定與p值的計算 19
3.3 研究參數設定 20
第四章 模擬結果討論 22
4.1 檢定結果U,V,S,T,R,W討論 22
4.2 單一參數變動討論 29
4.3 三參數變動討論 37
4.4 sigma1與sigma2的討論 58
4.5 特定的參數設定變動討論 64
第五章 結論 68
參考文獻 72
附圖 74
Benjamini, Y., Hochberg, Y. (1995).
Controlling the false discovery rate: a practical and powerful approach to multiple testing.
J. R. Statist. Soc. B, 57, 289-300.


Benjamini, Y., Liu, W. (1999a).
A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence.
JSPI, 82, 163-170.


Benjamini, Y., Liu, W. (1999b).
A distribution-free multiple-test procedure that controls the false discovery rate.
Unpublished manuscript.


Benjamini, Y., Hochberg, Y. (2000).
On the adaptive control of the false discovery rate in multiple testing with independent statistics.
Journal of Educational and Behavioral Statistics, 25, 60-83.


Benjamini, Y., Krieger, A. M., Yekutieli, D. (2005).
Adaptive linear step-up procedures that control the false discovery rate.
Unpublished manuscript.


Nguyen, D. V. (2004).
On estimating the proportion of true null hypotheses for false discovery rate controlling procedures in exploratory DNA microarray studies.
Computational Statistics and Data Analysis, 47, 611-637.


Pawitan, Y. et al. (2005).
False discovery rate, sensitivity and sample size for microarray studies.
Bioinformatics, 21, 3017-3024.


Schweder, T., Spjotvoll, E. (1982).
Plots of p-values to evaluate many tests simultaneously.
Biometrika, 69, 493-502.


Simes, R. J. (1986).
An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73, 751-754.


Storey, J. D. (2002).
A direct approach to false discovery rates.
J. R. Statist. Soc. B, 64, 479-498.


Sarkar, S. K. (2004).
FDR-controlling stepwise procedures and their false negatives rates.
JSPI, 125, 119-137.


Yekutieli, D., Benjamini, Y. (1999).
Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics.
JSPI, 82, 171-196.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top