|
Anderson, D.A. & Aitkin, M.(1985). Variance component models with binary response: Interviewer variability. Journal of the Royal Statistical Society B, 47(2),203-210.
Aitkin,F. (1999). A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 117-128.
Fotouhi, A. R. (2002). Comparisons of Estimation Procedures for Nonlinear Multilevel Models. Journal of Statistical Software ,Volume 8, 2003, Issue 9
Bryk, A. S. , Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: Sage.
Breslow, N. & Clayton D. (1993). Approximate inference in generalized linear models, Journal of the American Statistical Association, 88, 9-25.
Breslow, N. & X . Lin (1995). Bias correction in generalized linear mixed models. Biometrika, 88, 81-91.
Browne, W.J (1998). Applying MCMC Methods to multilevel Models, PHD dissertation, Department of Mathematical Sciences, University of Bath.
Browne, W.J. & Draper D.(2000). Implementation and performance issues in the Bayesian fitting of multilevel models. Computational Statistics, 15, 319-420.
De Leeuw, J.(1992). Series editor’s introduction to hierarchical linear models. In A. S.
Draper, D.(1995).Inference and hierarchical modeling in the social sciences. Journal of Educational and Behavioral Statistics, 20(2),115-147.
Goldstein, H. I. (1987). Multilevel models in educational and social research. London:Oxford University Press.
Goldstein, H. & Rasbash, J. (1996). Improved approximations for multilevel models with binary responses. Journal of the Royal Statistical Society A,159, 505-513.
Hedeker, D. & Gibbons, R.(1994). A random-effects ordinal regression model for multilevel analysis. Biometrics, 993-994.
Hedeker, D. & Gibbons, R.(1996). MIXOR:A computer program for mixed-effects ordinal probit and logistic regression analysis. Computer Methods and Programs in Biomedicine,49, 157-176.
Kreft, I. G. G., de Leeuw, J. & Kim, K.-s (1990). Comparing four different statistical packages for hierarchical linear regression: GENMOD, HLM, ML2, and VARCL. Los Angeles, CA: University of California, Los Angeles.
Kim, K.-S. (1990). Multilevel Data Analysis: a Comparison of Analytical Alternatives. Ph.D. thesis, University of California, Los Angeles.
Kreft, I. G. G.(1995). Hierarchical linear models :Problems and prospects. Journal of Educational and Behavioral Statistics, 20(2), 109-113.
Laird, N. M. & Ware, H. (1982). Random-effects models for longitudinal data. Biometrics, 38. 963-974.
Lesaffre, E. & Spiessens B. (2001). On the effect of the number of quadrature points in a logistic random-effects model. Applied Statistics, 50, 325-335.
Morris, C. H. (1995). Hierarchical models for educational data: An overview. Journal of Educational and Behavioral Statistics , 20(2), 190-200.
Mok,M.(1995). Sample Size Requirements for 2-level Designs in Educational Research. University of Macquarie.
McCulloch, C.E. (1997). Maximum Likelihood Algorithms for Generalized Linear Mixed Models. Journal of the American Statistical Association, 91, 162-170.
McCulloch, C.E. & Searle S.R. (2001). Generalized linear and Mixed Models, New York: Wiley.
Callens,M. & Croux,C.(2005). Performance of likelihood-based estimation methods for multilevel binary regression models . Journal of Statistical Computation and Simulation, Taylor & Francis, Volume 75, 2005 December 12 , 1003 - 1017.
Pinheiro, J. & Bates, D. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics,4(1), 12-35.
Pinheiro, J. & Bates, D.(1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4(1), 12-35.
Rosenberg, B.(1973). Linear regression with randomly dispersed parameters. Biometrika, 60,61-75.
Rodriguez,G. & Goldman, N. (1995). A assessment of estimation procedures for multilevel models with binary response. Journal of the Royal Statistical Society A,158, 73-89.
Raudenbush, S.W., Yang,M. & Yosef, M. (2000). Maximum Likelihood for hierarchical models via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9, 141-157.
Rodriguez,G. & Goldman, N. (2001). Improved estimation procedures for multilevel models with binary response: a case-study. Journal of the Royal Statistical Society A, 164, 339-355.
van der Leeden, R. & Busing, F. M. T. A. (1994). First iteration versus igls/rigls estimates in two-level models: a monte carlo study with ml3. Preprint PRM 94-03, Psychometrics and Research Methodology, Leiden, Netherlands.
林天佑(2001). 新論「降低班及學生數」與「學習成就」之關係.課程與教育通訊,6,11-12.
|