參考文獻
一、西文部份
Beale, R., & Jackson, T. (Eds.). (1990). Neural computing: An introduction. Bristol: IOP Publishing Ltd.
Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 955-974.
Chan, P. K., Fan, W., Prodromidis, A. L., & Stolfo, S. J. (1999). Distributed data mining in credit card fraud detection. IEEE Intelligence Systems, 14, 67-74.
Chen, P. H., Fan, R. E., & Lin, C. J. (2006). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Neural Networks, 17(4), 893-908.
Chen, R. C., Chen, J., Chen, T. S., Hsieh, C. H., Chen, T. Y., & Wu, K. Y. (2005). Building an intrusion detection system based on support vector machine and genetic algorithm. Lecture Notes in Computer Science (LNCS), 3498, 409-414.
Chen, R. C., Chen, T. S., & Lin, C. C. (2006). A new binary support vector system for increasing detection rate of credit card fraud. International Journal of Pattern Recognition and Artificial Intelligence, 20(2), 227-239.
Chen, R. C., Chen, T. S., Chien, Y. E., & Yang, Y. R. (2005). Novel questionnaire-responded transaction approach with SVM for credit card fraud detection. Lecture Notes in Computer Science (LNCS), 3497, 916-921.
Chen, R. C., Chiu, M. L., Huang, Y. L., & Chen, L. T. (2004). Detecting credit card fraud by using questionnaire-responded transaction model based on support vector machines. Lecture Notes in Computer Science (LNCS), 3177, 800-806.
Chen, T. S., Chen, R.C., Tsai, T.H., Li, S. Y., Liang, X., & Lin, C. C. (2005, October). Classification of Microarray Gene Expression Data Using a New Binary Support Vector System. Paper presented at the International Conference on Neural Networks and Brain , Beijing, China.
Crstianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, MA: Cambridge University Press.
Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906-914.
Hong, S. J., Weiss, S. M. (2001). Advances in predictive models for data mining. Pattern Recognition Letters, 22, 55-61.
Lam, M. (2004). Neural network techniques for financial performance prediction integrating fundamental and technical analysis, Decision Support Systems, 37, 567-581.
Li, Y., Gong, S.G., Sherrah, J., & Liddell, H. (2004). Support vector machine based multi-view face detection and recognition, Image and Vision Computing, 22(5), 413-427.
Rüping, S. (2000). mySVM-Manual [computer software and manual]. Retrieved form http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
Schőlkopf, B., Burges, C. J. C., & Smola , A. J.(Eds.). (1999) . Introduction to Support Vector Learning Advances in Kernel Methods-Support Vector Learning, 1-15, Cambridge, A: MIT.
Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.
Vapnik, V. K. (1995). The Nature of Statistical Learning Theory. Berlin: Springer Verlag.
二、中文部份
ENews電子新聞報。取自:
http:// www.dajiyuan.com/b5/3/10/8/n390258.htm
http://www.enews.com.tw/
人民網。取自:http:// http://www.unn.com.cn/
大紀元新聞網。民 92 年 10 月 08 日,取自:
因資料泄漏導致信用卡盜刷將由銀行埋單(民 94 年 10 月 23 日)。新華網。民 94 年 10 月 23 日,取自:http:// big5.xinhuanet.com/gate/big5/
news.xinhuanet.com/fortune/2005-06/23/content_3124488.htm
汪昭緯(民89)。應用分群技術偵測信用卡異常交易之研究。國立中央大學資訊管理研究所碩士論文,桃園縣。信用卡犯罪/今年盜刷金額可能直攀25億元新高(民 89 年 10 月 18 日)。中時奇摩報。民 89 年 10 月 18 日,取自:http://www.news.kimo.com.tw/
信用卡業務統計(94年版)【資料檔】。台北市:行政院金融監督管理委員會銀行局。
許錦銘、趙惠美、涂世雄(民 92)。強化信用卡電子交易之研究。ITIS產業論壇,5(3)。民 92 年 8 月 21 日,取自:http://www.if.itri.org.tw/content05/02if48a.htm陳來成(民90)。應用資料探勘技術建立商業預測模型-以信用卡為例。私立元智大學資訊管理研究所碩士論文。桃園縣。陳榮昌、陳同孝、楊靜宜(民92)。SVM應用於防止信用卡盜刷,第一屆流通與全球運籌研討會。
曾月金(民92)。信用卡詐欺偵測模式之研究。私立銘傳大學資訊管理研究所碩士在職專班碩士論文。台北市。黃敦硯(民 94 年 4 月 30 日)。101名牌店國際化盜刷。大紀元新聞網。民 94年 4 月 30 日,取自:http://www.epochtimes.com/gb/5/4/30/n905507.htm
黃琮盛(民89)。以個人消費行為預測信用卡詐欺事件之研究。國立中央大學資訊管理研究所碩士論文。桃園縣。葉怡成(民82)。類神經網路模式應用與實作。台北市:儒林出版社。
葉怡成(民84)。應用類神經網路。台北市:儒林出版社。