(3.215.77.193) 您好!臺灣時間:2021/04/17 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡君微
研究生(外文):Chun-Wei Tsai
論文名稱:二維凝膠電泳影像中蛋白質偵測及比對技術之研究
論文名稱(外文):A study of Protein Detection and Comparison Techniques of Two-Dimensional Electrophoresis Gel Images
指導教授:陳同孝陳同孝引用關係
指導教授(外文):Tung-Shou Chen
學位類別:碩士
校院名稱:國立臺中技術學院
系所名稱:資訊科技與應用研究所
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:85
中文關鍵詞:電泳影像偵測比對微量蛋白重疊
外文關鍵詞:Electrophoresis Gel Imagedetectioncomparison
相關次數:
  • 被引用被引用:2
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蛋白質二維凝膠電泳影像 (Two-Dimensional Electrophoresis Gel image, 2DE images) 用以進行疾病致病機轉的尋找己經很多年了。為了提升偵測比對的準確性及減少人工偵測比對所需的工作時間,目前全世界有許多相關的工具軟體被開發出來,而過去我們亦曾以鍵結碼和向量壓縮技術開發蛋白質二維凝膠電泳影像偵測和比對等相關技術。
但目前這些偵測比對技術與工具的效果都有值得加強的空間。例如:在偵測方面,目前的偵測技術在執行時,系統都需要設定多個參數值。因此,使用者需要自行決定參數,對於使用者而言,並不了解系統演算法,亦無法取得一個適用的參數值。或是使用者可使用系統所提供之預設值,但預設之參數值則無法依每一個二維凝膠電泳影像自行調整。不適合的參數值將造成不恰當的偵測結果。參數值設定的因素,通常是造成微量蛋白被正確偵測率較低,以及二維凝膠電泳影像上重疊點無法被明確定義的原因之一。
除此之外,在比對方面,目前的比對技術大都假設同一組蛋白質二維凝膠電泳影像在進行電泳實驗時,環境參數相似,則所得到之電泳影像間整體亮度以及相對應蛋白質位移程度不大。因此,所設計之比對演算法則不適用於,不同組實驗所得到的二維凝膠電泳影像,或是亮度和相對應蛋白質位移程度較大的二維凝膠電泳影像。目前比對的技術在使用上,可能會有考慮不周詳或處理速度過慢的問題。
為了提升蛋白質樣本點偵測和比對的效率和品質,以協助生物學家們快速、準確得到致病機轉。故本研究計畫開發進階之二維凝膠電泳影像中蛋白質點偵測和比對相關技術,我們稱它們為「多層次影像切割合併偵測法」和「漸進式比對法」。
在第一部份的「多層次切割合併偵測法」中,我們運用不同門檻值,針對進行偵測之二維凝膠電泳影像產生多張二質化影像(binary image),我們的偵測方法會自動偵測進行偵測影像中每一個蛋白質樣本點最適合的參數值,並自動從多張二質化影像中取得每一個蛋白質樣本點最適當的表現方式。將同一張二維凝膠電泳影像上每一個蛋白質最適當的情況予以合併,以取得二維凝膠電泳影像中蛋白質點的最佳的表達情況,此合併之表達情況即為偵測結果,多層次影像切割合併偵測法所得到之最高精確率(precision rate)可達95%,且平均精確率 (precision rate)達89.6%,相較於IM的平均準確率76.5%明顯高出約15個百分點。
在第二部份的「漸進式比對法」研究中,我們利用多層次影像切割合併偵測法在合併過程中之二質化影像,設計階段性之比對流程。在進行比對之前,我們重新規劃蛋白質樣本點的量化特徵值及,改良傳統蛋白質群彼此相似度之定義方式(即為歐幾里德距離計算公式)設計適當之評估函式,用以完整表達蛋白質樣本點座標方面之特質。可想像成,先將影像上的蛋白質點依濃度進行分群,在相同濃度之蛋白質點群集中,依據我們的評估函式進行蛋白質點間之相似度相似度計算,以取得各濃度群集中的比對結果,最後再將各階段比對結果予以合併。經漸進式比對後兩比對影像可得到更好的比對結果,漸進式比對法之最高準確率 (precision rate)可達97%,且平均精確率 (precision rate)約94.2%,相較於IM的平均準確率89.1%亦是明顯高出許多。
The two-Dimensional electrophoresis gel image (2DE image) is important and popularly used in pathogenesis research. In our previous works, we used techniques such as chain code and vector quantization compression to develop detection and comparison techniques for 2DE images. There are also many other commercial software tools available for the same purpose. However the detection and comparison results of these tools and our past techniques cannot meet the accuracy requirement needed in protein research. For example most techniques require many parameters settings and cannot be tailor-adjusted to match the characteristics of individual protein spot. Since each individual protein spot is characteristically different, the detection process will result in some inaccuracies. Furthermore when comparing two 2DE images, the parameters used in both are quite close and are likely to be identified as images from the same group. Therefore for images with closer characteristics but are from different groups and for images with characteristics that are far apart, the current comparison techniques will result in issues such as incompleteness or slower process time.
For the biologist to be able access 2DE images quickly and accurately, it would be desirable to make improvements to increase the effectiveness and quality of the detection and comparison techniques. The proposed research is to develop improved detect and compare techniques for the 2DE images. The proposed techniques are named multi-layer cut and merge detection (MLCM) and progressive comparison techniques (PCT), respectively.
In the MLMC technique different thresholds are used on the same 2DE image to generate multiple copies of the 2DE binary images. Then on each generated image the detection technique detect for the most optimal parameters for the individual protein spots. The multiple images will then be stacked and the results from the individual generated images will be used to get optimal final detection for the overlapped protein spots. Experimental results on the MLCM technique proved that the detection technique achieved the highest detection accuracies as 95% and average detection accuracies as high as 89.6%.
In the PCT, the generated images from the MLCM technique will be used together with the concentration levels of the individual protein spots. First the proteins are quantized progressively by using a modified form of Euclidean distance equation to calculate the distance of overlapping protein spots between two images. The results are then progressively compared between every two images to get the optimal information on the protein spots. Results showed that more protein spots were can be identified. The highest comparison accuracies were as high as 97%, and average comparison accuracies as 94.2%.
第一章、緒論
1.1 背景 1
1.2 蛋白質二維凝膠電泳影像及其應用 2
1.3 研究動機及目的 10

第二章、文獻探討
2.1 偵測相關工具軟體之探討 24
2.2 比對相關工具軟體之探討 31

第三章、研究方法
3.1 多層次切割合併偵測法 29
3.2 漸進式比對法 40

第四章、研究步驟
4.1 多層次切割合併偵測法 45
4.1.1 蛋白質二維凝膠電泳影像亮度正規化 45
4.1.2 取得R之二質化影像Bt 46
4.1.3 Bt中蛋白質點分群,並計算面積 48
4.1.4 合併 50
4.2 漸進式比對法 54
4.2.1 Mt中蛋白質點相異度計算 54
4.2.2 決定各Mt中初步比對組合 55
4.2.3 決定最終比對成功組合 56

第五章、實驗結果與討論 61

第六章、結論 77


參考文獻 78
[1] Andrew, S. D., Kuiper, M. J., Wride, M. A., Mansergh, F. C., Rancourt, D. E., and Mulligan, L. M. “Structural Variation in a Novel Zinc Finger Protein and Investigation of Its Role in Hireshsprung Disease,” Vol. 16, 69-76, 2003.
[2] Bledi, Y., Alex I., and Linial, M. “Proceed: A Proteomic Method for Analysing Plasma Membrane Proteins in Living Mammalian Cells,” Briefings in Functional Genomics and Proteomics, Vol. 2, No. 3, 254-265, October, 2003.
[3] Bader, G. D., Heilbut, A. H., Andrews, B., Tyers, M., Hughes, T., and Boone, C. “Functional Genomics and Proteomics: Charting a Multidimensional Map of the Yeast Cell,” Trends Cell Biol. Vol. 13, No. 7, 344-356, 2003.
[4] Bredemeyer, A. J., Lewis, R. M., Malone, J. P., Davis, A. E., Gross, J., Townsend R. R., and Lev, T. J. “A Proteomic Approach for the Discovery of Protease Substrates,” Medical Sciences, Vol. 101, No. 32, 11785-11790, August 10, 2004.
[5] Chen C. H., Liu, B. D., and Yang, J. F. “Direct Recursive Structures for Computing Radix-r Two-Dimensional DCT/IDCT/DST/IDST,” IEEE Transactions on Circuits and Systems I Regular Papers, Vol. 51, 2017-2030, October, 2004.


[6] Chen, S., and Robert, M. H. “Recursive Erosion, Dilation, Opening, and Closing Transforms,” IEEE Transactions on Image Processing, Vol. 4, 335-345, March, 1995.
[7] Chi, P. H., Scott, G., and Shyu, C. R. “A Fast Protein Structure Retrieval System Using Image-Based Distance Matrices and Multidimensional Index,” in Proceedings of the fourth IEEE Symposium on Bioinformatics and Bioengineering, 522-529, May, 2004.
[8] Cristea, P., and Tuduce, R. “Signal Processing of Genomic Information: Mitochondrial Genomic Signals of Hominidae,” in Proceedings of 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications, Vol. 1, 309-214, July, 2003.
[9] Chen T. S., Wu, H. C., Tsai, H. F., Hsieh, M., and Chiou, S. F. “Progressive Transmission of Two-Dimensional gel Electrophoresis Image Based on context features and Bit-plan,” in Proceedings of 2004 IEEE International Conference on Networking, Sensing and Control (ICNSC 2004), 1241-1246, March 21-24, 2004.
[10] Dowsey, A. W., Dunn, M. J., and Yang, G. Z. “The Role of Bioinformatics in Two-Dimensional Gel Electrophoresis”, Proteomics, 1567-1596, 2003.


[11] Finehout, E. J., Franck, Z., and Lee, K. H. “Complement Protein Isoforms in CSF as Possible Biomarkers for Neurodegenerative Disease,” Disease Markers, Vol. 21, 93-101, 2003.
[12] Gmd, T. B. “Guided Image Interpretation in Proteome Analysis,” Technique Report by GMD Institute for Applied Information Technology, Germany.
[13] Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., and Aebersold, R. “Evaluation of Two-Dimensional Gel Electrophoresis-Based Proteome Analysis Technology,” in Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 17, 9390-9395, August, 2000.
[14] Gore, A., Weiss, W., and Dunn, M. J. “Current Two-Dimensional Electrophoresis Technology for Proteomics”, Proteomics, 3665-3685, 2004.
[15] Hauck, S. M., Ekstrom, P. A. R., Ahuja-Jensen, P., Suppmann, S., Paquet-Durand, F., Veen, T. V., and Ueffing, M. “Differential Modification of Phosducin Protein in Degenerating rd1 Retina Is Associated with Constitutively Active Ca2+/Calmodulin Kinase II in Rod Outer Segment,” Molecular & Cellular Proteomics, Vol. 5, 324-336, 2006.
[16] Hoogland, C., Mostaguir, K., Sanchez J. C., Hochstrasser, D. F., and Appel, R. D. “SWISS-2DPAGE, Ten Years Later,” Proteomics, Vol. 4, 2352-2356, Jun 21, 2004.
[17] Hojte P., and Wang, X. “Registering Electrophoresis Images for Bioinformatics Study of Protein,” in Proceedings of 2003 International Conference on Multimedia and Expo (ICME '03), Vol. 3, 465-468, July, 2003.
[18] Josso, B., Zindy, E., and Aldemir, H. “Automatic 2-D Gel Registration Using Distance Minimisation of Image Morphing,” in Proceedings of IEEE International Conference on Information Visualization, 357-361, July, 2000.
[19] Klose, J., Nock, C., Herrmann, M., Stuhler, K., Marcus, K., Bluggel, M., Krause, E., et al. “Genetic Analysis of the Mouse Brain Proteome,” Nature Genetics, Vol. 30, 385-393, 2002.
[20] Khan, N., and Rahman, S. “A New Approach to Detect Similar Proteins from 2D Gel Electrophoresis Images,” in Proceedings of third IEEE Symposium on Bioinformatics and Bioenginee ring, 182-189, March, 2003.
[21] Luhn, S., Berth, M., Hecker, M., and Bernhardt, J. “Using Standard Positions and Image Fusion to Create Proteome Maps from Collections of Two-Dimensional Gel Electrophoresis Images,”Proteomics, Vol. 3, 1117-1127, 2003.
[22] Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody M. C., Baldwin, J., et al. “Finishing the Euchromatic Sequence of the Human Genome,” Nature, 931-945, 2004.

[23] Michael, J. D., and Guang, Z. Y. “Multiresultion Image Registration for Two-Dimensional Gel Electrophoresis,” Proteomics, 856-870, 2001.
[24] Mitton, B., and Kranias, E. G. “Proteomics: Its Potential in the Post-Genome Era,” The Hellenic Journal of Cardiology, Vol. 44, 301-307, 2003.
[25] O’Farrell, P. H. “High Resolution Two-Dimensional Electrophoresis of Proteins,” The Journal of Biological Chemistry, Vol. 250, No. 10, 4007-4021, 1975.
[26] Raman, B., Cheung, A., and Marten, M. R. “Quantitative Comparison and Evaluation of Two Commercially Available, Two-Dimensional Electrophoresis Image Analysis Software Packages, Z3 and Melaie”, Electrophoresis, Vol. 23, 2194-2202, 2002.
[27] Smilansky, Z. “Automatic Registration for Images of Two-Dimensional Protein Gels,” Electrophoresis, 22, 1616-1626, 2001.
[28] Shadle, S. E., Allen, D. F., Guo, H., Pogozelski, W. K., Bashkin, J. S., and Tullius, T. D. “Quantitative Analysis of Electrophoresis Data: Novel Curve Fitting Methodology and Its Application to the Determination of a Protein–DNA Binding Constant,” Nucleic Acids Research, Vol. 25, No. 4, 850-860, 1997.
[29] Sidhu, A. S., Dillon, T. S., Chang, E., and Sidhu, B. S. “Protein Ontology: Vocabulary for Protein Data,” in Proceedings of third International Conference on Information Technology and Applications, Vol. 1, 465-469, July 4-7, 2005.
[30] Selvarajan, A., and Srinivas, T. “Optical Amplification and Photosensitivity in Sol-Gel Based Waveguides,” IEEE Journal of Quantum Electronics, Vol. 37, 1117-1126, September, 2001.
[31] Thompson, A., and Brotherton, T. “Information Extraction from 2D Electrophoresis Images,” In Proceedings of the 20th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Vol. 2, 1060-1063, November, 1998.
[32] 吳國怡。生物技術,環境產業報告:他山之石-亞洲生物資訊發展趨勢。工業技術研究院產業經濟與資訊服務中心,1-3,2001。
[33] 胡湘玲。誰的「生命藍圖」?後基因體時代的蛋白體學。科學發展:STS專欄,80-82,2003。
[34] 2D GEL ELECTROPHORESIS FOR PROTEOMICS TUTORIAL
(http://www.aber.ac.uk/parasitology/Proteome/Tut_2D.html)
[35] BioMol (http://www.biomol.com)
[36] Czech Medical association (http://www.pmma.pmfhk.cz/)
[37] Duncan labs (http://proteomics.uchsc.edu/)
[38] GeneBio(http://www.genebio.com)
[39] Genome Programs of the U.S. Department of Energy Office of Science
(http://www.ornl.gov/sci/techresources/Human_Genome)
[40] Hartwell Center for Bioinformatics and Biotechnology
(http://www.hartwellcenter.org)
[41] Heart High-Performance 2-DE Database
(http://www.mdc-berlin.de/~emu/heart/huhelist.html)
[42] Ludwig institute for cancer research (http://www.licr.org/)
[43] Max Planck institute (http://www.mpiib-berlin.mpg.de/)
[44] Medizinisches proteom center (http://www.medizinisches-proteom-center.de/)
[45] RAT HEART-2DPAGE
(http://www.mpiib-berlin.mpg.de/2D-PAGE/RAT-HEART/2d/)
[46] SWISS-2DPAGE Two-dimensional polyacrylamide gel electrophoresis database (http://www.expasy.org/ch2d/)
[47] Washington university school of medicine (http://oto.wustl.edu)
[48] WORLD-2DPAGE Index to 2-D PAGE databases and services
(http://www.expasy.org/ch2d/2d-index.html)
[49] 台大蛋白質暨蛋白功能核心實驗室
(http://www.cgm.ntu.edu.tw/chinese/index_ie.html)
[50] 成大生物科技中心(http://www.ncku.edu.tw/~cbst/)
[51] 冷泉港生物科技(http://www.csbiotech.com.tw)
[52] 莊榮輝教學網頁(http://juang.bst.ntu.edu.tw)
[53] 海洋大學海洋生物研究所(http://www.ntou.edu.tw/imb/)
[54] 陽明大學(http://www.ym.edu.tw/)
[55] 經濟部生物技術與醫藥工業發展推動小組
(http://www.biopharm.org.tw/media/bioera/2002_7/main.html)
[56] 喀什米爾生物科技公司(http://www.cashmere.com.tw/new259.htm)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔