跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張駿暉
研究生(外文):Jiun-Huei Jang
論文名稱:昇力效應對彎道床形及床質影響之研究
論文名稱(外文):Effect of lifting force on bed topography and bed-surface sediment size in channel bend
指導教授:顏清連顏清連引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:172
中文關鍵詞:昇力彎道沈滓運移床形床質
外文關鍵詞:lifting forcebendsediment transportbed topographybed-surface sediment size
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對沈滓運移而言,昇力可以減少沈滓顆粒跟床面的摩擦力,使其更容易被剪力所帶走。在彎道中,由於昇力的不均勻分佈,忽略昇力的作用可能會造成在推估沈滓運移量時,產生相當大的誤差。本研究致力於研究昇力相關的理論及數值模式,並將其應用於彎道床形及床質的探討。
由於昇力和渦度呈正向的相關,本研究使用三維的大渦紊流數值模式,模擬彎道中的渦度場,以瞭解昇力的分佈。結果顯示在彎道中,靠近外岸的昇力大於內岸,而隨著床形的發展,此種現象更為明顯。此外,不同於剪力與沈滓顆粒大小無關,昇力的效應會隨著顆粒粒徑增加而減少。
透過昇力相關理論的分析及推導,結果顯示沈滓顆粒啟動之後的摩擦力 小於臨界狀態的摩擦力 。而在有效剪力的表示式中,利用 取代 ,昇力的效應即可納入用以推估沈滓的運移量。
在數值模式方面,本研究採用一套完整的模式,以非耦合的方式結合水理與輸砂模式,模擬彎道床形及床質。模擬的結果顯示,在考慮昇力的效應之後,誤差降低了大約 。為了提供實際工程的應用,研究中亦發展一套簡化的模式,以減少電腦運算的時間。對於此簡化模式而言,雖然模擬結果誤差增加了約 ,但運算時間卻大幅減少為完整模式的 。
最後,本研究規劃了數組數值試驗,探討水理及渠道無因次參數對彎道床形及床質的影響。其中,經由迴歸分析,可得到彎道完全發展段之逕向坡度、沖刷面積比、最大沖刷深度及最大床面中值粒徑與無因此參數的迴歸方程式。結果顯示密度福祿數(densimetric Froude number)及初始沈滓粒徑級配為影響彎道床形及床質變化最重要的因素。此外,在文中採用了其他的彎道實驗資料與回歸方程式預測的結果作比較。結果發現,預測與實驗的值相當吻合,並且其相關係數皆高於 。因此,本研究歸納之回歸方程式於工程的適用性得以驗證。
In sediment transport, the lifting force plays an important role in reducing the friction between sediment particle and bed surface, and thus makes particles easier to be transported by shear force. Non-uniform distribution of lifting force in channel bend may cause serious errors in describing sediment transportation if the lifting force effect is not taken into account. In the present study, relevant theories and numerical models are investigated and employed to study the lifting force effect on the bed topography and sediment gradation in channel bend.
Since the lifting force, , is related to vorticity, a 3D numerical model incorporating large eddy simulation is applied to simulate the vorticity field in channel bend. The results of simulation show that is larger around the outer bank and smaller around the inner one in a bend. As bed topography develops in a bend, this phenomenon is enhanced. Unlike the shear stress regarded as being independent of sediment size, the lifting force effect is smaller for a larger sediment particle.
Through a series of physical considerations, existing theories are reviewed and modified to find that the friction of particle in motion, , becomes smaller than that at incipient motion, . By replacing with in the expression of effective shear stress, the lifting force effect can be taken into consideration in predicting the sediment transport rate.
In this research, a total numerical model composed of the flow model and bed model is employed to simulate the bed topography and bed-surface sediment size in a channel bend. Comparing the simulated results with and without consideration of the lifting force effect, it shows that the errors can be reduced by about with the lifting force effect considered. For practical engineering applications, further efforts are made to develop an approximate model for bed-surface sediment size distribution to shorten the computation time. Although errors inherited in the approximate model increase by about , it consumes only about of the computation times of the total model.
Finally, various numerical experiments are conducted under various conditions to study the effects of flow and channel parameters on bed topography and sediment gradation in channel bend. The fully developed transverse bed-slope, ratio of the erosion area to the total channel bed area, maximum erosion depth of the developed bed, and maximum median diameter of bed-surface sediment of the developed bed, are expressed as regression functions composed of non-dimensional parameters. The regressed results show that densimetric Froude number and initial sediment gradation are the major factors affecting the variations of bed topography and bed-surface sediment size. In order to verify the applicability of these regression equations, more experimental data in channel bend are employed to testify their validity. The results show that the predicted values agree quite well with the experimental results and the correlation coefficients are all greater than . This verifies the applicability of these regression equations in practical engineering use.
謝 誌.....................................................i
CONTENTS.................................................ii
摘 要....................................................iv
ABSTRACT.................................................vi
LIST OF TABLES.........................................viii
LIST OF FIGURES...........................................x
CHAPTER 1.INTRODUCTION....................................1
1.1. MOTIVES..............................................1
1.2. LITERATURE SURVEY....................................2
1.3. ORGANIZATIONS........................................5
CHAPTER 2. THERORETICAL CONSIDERATIONS....................7
2.1. FLOW MODEL...........................................7
2.2. BED MODEL...........................................11
2.3. DISTRIBUTION OF VORTICITY IN CHANNEL BEND...........13
2.4. EFFECTS OF SDIMENT NON-UNIFORMITY...................22
CHAPTER 3. SIMULATION OF BED TOPOGRAPHY AND BED-SURFACE SEDIMENT SIZE............................................29
3.1. PROCEDURES OF SIMULATION............................29
3.2. RESULTS OF SIMULATION...............................34
3.3. APPROXIMATE FOR BED-SURFACE SEDIMENT SIZE...........38
3.4. DISCUSSIONS.........................................50
CHAPTER 4. NUMERICAL EXPERIMENTS.........................54
4.1. NON-DIMENSIONAL ANALYSIS............................54
4.2. INFLUENCES OF NON-DIMENSIONAL PARAMETERS............57
4.3. COMPREHENSIVE ANALYSIS..............................63
4.4. VERIFICATION OF REGRESSION EQUATIONS................65
CHAPTER 5. CONCLUSIONS AND SUGGESTIONS...................67
5.1. CONCLUSIONS.........................................67
5.2. SUGGESTIONS.........................................69
REFERENCES...............................................71
APPENDIX A –BASICS FOR 3D FLOW MODEL....................80
APPENDIX B –BASICS FOR BED MODEL........................87
TABLES...................................................95
FIGURES.................................................105
NOMENCLATURE............................................164
1.Abbott, J. E., and Francis, J. R. C., 1977, “Saltation and Suspension Trajectories of Solid Grains in a Water Stream,” Proc. R. Soc. London, Ser. A, Vol. 284, pp. 225-254.
2.Ahmed, A. K., 1998, “Comparison of Coupled and Semicoupled Numerical Models for Alluvial Channels,”, Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 8, pp. 794-802
3.Allen, J. R., 1970, “A Quantitative Model of Grain Size and Sedimentary Structures in Lateral Deposits,” Geological Journal, Vol. 7, pp. 129-146.
4.Bagnold, R. A., “The Nature of Saltation and of Bed-Load Transport in Water,” Proc. Royal Soc., London, England, A 332, 1973.
5.Chang, H. K., 1997, “Simulation of Bed Topography and Flow Field in Channel Bend”, Master’s Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan. (in Chinese)
6.Chapman, D. R., 1979, “Computational Aerodynamics Development and Out-look,” AIAA Journal, Vol. 17, No. 12, pp.1293-1313.
7.Chepil, W. S., 1961, “The Use of Spheres to Measure Lift and Darg on Wind-Eroded Soil Grains,” Soil Sci. Soc. Am. Proc., Vol. 25, No. 5, pp. 343-345.
8.Cox, R. G.,and Hsu, S. K., 1977, “Lateral Migration of Solid Particles in a Laminar Flow Near a Plane,” International Journal of Multiphase Flow, Vol. 3, No. 3, pp. 201-222.
9.Dandy, D. S., and Dwyer, H. A., 1990, “Sphere in Shear Flow at Finite Reynolds Number. Effect of Shear on Particle Lift, Drag, and Heat Transfer,” Journal of Fluid Mechanics, Vol. 216, pp. 381-410.
10.de Vriend, 1981, “Velocity Redistribution in Curved Rectangular Channels,” Journal of Fluid Mechanics, Vol. 107, Jun, pp. 423-439.
11.Delft Hydraulics Laboratory, 1979, “Verification of Flume Tests and Accuracy of Flow Parameters,” Note R 657-VI, Delft, The Netherlands. (in Dutch)
12.Demuren, A. O., and Rodi, W., 1986, “Calculation of Flow and Pollutant Dispersion in Meandering Channels,” Journal of Fluid Mechanics, Vol. 172, pp. 63-92.
13.Egiazaroff, I. V., 1965, “Calculation of Nonuniform Sediment Concentrations,” Proc. ASCE, Vol. 91, No. Hy4, pp. 225-247.
14.Einstein, H. A., 1944, Bed-Load Transportation in Mountain Creek, U.S. Department of Agriculture, Washintion, D. C.
15.Einstein, H. A. and El-Sammi. E. A., 1942, “Formula for the Transportation of Bed-Load,” Transaction of the ASCE, Vol. 107.
16.Einstein, H. A., 1950, The Bed-load Function for Sediment Transportation in Open Channel Flows, Technical Bulletin No. 1026, U. S. Department of Agriculture, Soil Conservation Service, Washington, D.C..
17.Engelund, F., 1974, “Flow and Bed Topography in Channel Bend,” Journal of Hydrolics Division, ASCE, Vol. 100, No. Hy11, pp. 1637-1648.
18.Falcon Acsanio, M., 1979, “Analysis of Flow in Alluvial Channel Bends,” Ph. D. Thesis, University of Iowa, Iowa City, Iowa, USA.
19.Fernandez Luque R. and van Beek R., 1976, “Erosion and Transport of Bed-Load Sediment,” Journal of Hydraulic Research, Vol. 14, No. 2, pp. 127-144.
20.Francis, J. R. D., 1973, “Experiments on the Motion of Solitary Grains along the Bed of a Water Stream,” Proc. R. Soc. London, Ser. A, Vol. 332, pp. 443-471.
21.Gordan, R., Carmichael, J. B., and Isackson, F. J., 1972, “Saltation of Plastic Balls in a One-dimension Flume,” Water Resource Research, Vol. 8, No. 2, pp. 444-459.
22.Hooke, R. LeB., 1975, “Distribution of Sediment Transport and Shear Stress in a Meander Bend,” Journal of Geology, Vol. 83, pp. 543-565.
23.Hsiao, G. H., 1998, “Simulation of Bed Topography and Sediment Gradation in Channel Bend”, Master’s Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan. (in Chinese)
24.Ikeda, S., Yamasaka, M., and Chiyoda, M., 1987, “Bed Topography and Sorting in Bends,” Journal of Hydraulic Engineering, ASCE, Vol. 113, No. 2, pp. 190-206.
25.Jang, J. H., Ho, H. Y., and Yen, C. L., 2006, “Effect of Lift on Bed-Surface Sediment Size Distribution in Channel Bend,” Journal of the Chinese Institute of Engineers, Vol. 29. (accepted)
26.Kurose, R., and Komori, S., 1999, “Drag and Lift Forces on a Rotating Sphere in a Linear Shear Flow ,” Journal of Fluid Mechanics, Vol. 384, pp. 183-206.
27.Lee, H. Y., You, J. Y., and Lin, Y. T., “Continuous Saltating Process of Multiple Sediment Particle,” Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 4, pp. 443-450.
28.Lee, H. Y., and Hsu, I. S., 1994, “Investigation of Saltating Particle Motions,” Journal of Hydraulic Engineering, ASCE. Vol. 120, No. 7, pp. 831-845.
29.Legendre, D., and Magnaudet, J., 1997, “A Note on the Lift Force on a Spherical Bubble or Drop in a Low-Reynolds-Number Shear Flow,” Physics of Fluids, Vol. 9, No. 11, pp. 3572.
30.Leschziner, M. A., and Rodi, W., 1979, “Calculation of Strongly Curved Open Channel Flow,” Journal of Hydraulics Division, ASCE, Vol. 105, No. 10, pp. 1297-1314.
31.MacCormack, R. W., 1969, “The Effect of Viscosity in Hypervelocity Impact Cratering,” AIAA Journal, Vol. 7, pp. 69-354.
32.McLaughlin, J. B., 1991, “ Inertial Migration of a Small Sphere in Linear Shear Flows,” Journal of Fluid Mechanics, Vol. 224, pp. 261-274.
33.Mei, R., 1992, “Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number,” International Journal of Multiphase Flow, Vol. 18, No. 1, pp. 145-147.
34.Murphy, P. J., and Hooshiari, H., 1982, “Saltation in Water Dynamics,” Journal of Hydrolics Division, ASCE, Vol. 108, No. HY11, pp. 1251-1267.
35.Meriam, J. L., and Kraige, L. G., 1993, Engineering Dynamics - Volume Two, John Wiley & Sons, Inc., 3rd ed., pp. 703~704, Appendix D.
36.Odggard, A. J., 1981, “Transverse Bed slope in Alluvial Channel Bends,” Journal of Hydraulics Division, ASCE, Vol. 107, No. HY12, pp. 1677-1694.
37.Odggard, A. J., 1982, “Bed Characteristics in Alluvial Channel Bends,” Journal of Hydraulics Division, ASCE, Vol. 108, No. HY11, pp. 1268-1281.
38.Onishi, Y., Jain, S. C. and Kennedy, J. F., 1976, “Effects of Meandering in Alluvial Streams,” Journal of Hydraulics Division, ASCE, Vol. 102, No. HY7, pp. 899-917.
39.Peterson, A. W., and Howells, R. F., 1973, “A Compendium of Solids Transport Data for Mobile Boundary Channels,” Report No. Hy-1973-ST3, Dep. Of Civ. Eng., University of Alberta, Canada.
40.Rozovskii, I. L., 1961, Flow of Water in Bends of Open Channels, Academy of Sciences of Ukranian SSR., Kiev, 1957, Translated by Prushansky, Y., The Israel Program for Scientific Translations, Jerusalem.
41.Saffman, P. G., 1965, “The Lift on a Small Sphere in Slow Shear Flow,” Journal of Fluid Mechanics, Vol. 22, pp. 385-400.
42.Shields, A., 1936, Anwendung der Ähnlichkeitsmechanik und der Turbulenzforchung auf die Geschiebebewegung Mitteilungen der Preuss. Versuchanst. f. Wasserbau u. Schiffbau, Heft 26, Berlin, Germany. (in German) English translation by W. P. Ott and J. C. van Uchelen available as Hydrodynamics Laboratory Publication No. 167, Hydrodynamics Lab., California Institute of Technology, Pasadena.
43.Shimizu, Y., Yamaguchi, H.,and Itakura, T., 1990, “Three-dimensional Computation of Flow and Bed Deformation,” Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 9, pp. 1090-1108.
44.Smagorinsky, J., 1963, “General Circulation Experiments with Primitive Equation,” Monthly Weather Review, Vol. 91, pp. 99-154.
45.Song, C., and Yuan, M., 1988, “Weakly Compressible Flow Model and Rapid Convergence Methods,” Journal of Fluids Engineering, ASME, Vol. 110, pp. 441-445.
46.Struiksma, N., 1983, “ Results of Movable Bed Experiments in the DHL Curved Flume,” Report on Experimental Investigation, TWO Rep., No. R657-XVIII/M1771, Delft Hydraulics Laboratory, Delft, The Netherlands.
47.Sutmuller, A. M., and Glerum, H. L., 1980, “Description and Evaluation of Measurements Carried out in a Bend Flume with Sand Bend,” Rep. No. 14710101, Delft University of Technology, Dept. of Civil Engineering, Delft, The Netherlands.
48.Thomas, T.G., and Williams, J. J. R., 1995, “Large Eddy Simulation of a Symmetric Trapezoidal Channel at a Reynolds Number of 430,000,” Journal of Hydraulic Research, IAHR, Vol. 33, No. 6, pp. 825-842.
49.Tseng, M. H., 1994, “Numerical Simulation of Flow and Scour Around Bridge Pier,” Ph. D. Dissertation, National Taiwan University, Taipei, Taiwan. (in Chinese)
50.Tsorng, S. J., 1996, “Simulation of Three Dimensional Flow Field in Channel Bend”, Master’s Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan. (in Chinese)
51.Tsubaki, T., and Shinohara, K., 1959, “On the Characteristics of Sand Waves Formed upon Beds of Open Channels and Rivers,” Reports of Research Institute for Applied Mechanics, Vol. VII, No. 25, Japan.
52.van Rijn, L. C., 1984, “Sediment Transport, Part I; Bed Load Transport,” Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 10, pp. 1431-1456.
53.Wang, M., and Moin, P., 2002, “Dynamic Wall Modeling for Large-eddy Simulation of Complex Turbulent Flows,” Physics of Fluids, Vol. 14, No. 7, pp. 2043-2051.
54.White, B. R., and Schulz, J. C., 1964, “Magnus Effect in Saltation,” Journal of Fluid Mechanics, Vol. 81, pp. 497-512.
55.Wiberg, P. L., and Smith, J. D., 1985, “A Theoretical Model for Saltating Grains in Water,” Journal of Geophysical Research, Vol. 91, No. C4, pp. 7341-7354.
56.Williams, P. G., 1970, “Flume Width and Water Depth Effects in Sediment Transport Experiments,” Geol. Survey Prof. Paper 562-H, p. H5, Washinton, D. C.
57.Wu, W., Rodi, W., and Wenka, T., 2000, “3D Numerical Modeling of Flow and Sediment Transport in Open Channels,” Journal of Hydraulic Engineering, ASCE, Vol. 126, No. 1, pp. 4-15.
58.Yalin, M. S., 1972, Mechanics of Sediment Transport, Pergamon Press, Oxford, pp. 322-338.
59.Ye, J., and McCorquodale, J.A., 1998, “Simulation of Curved Open Channel Flows by 3D Hydrodynamic Model,” Journal of Hydraulic Engineering, ASCE, Vol. 124, No. 7, pp. 687-698.
60.Yen, B. C., 1965, Characteristics of Subcritical Flow in a Meandering Channel, Iowa Institute of Hydraulic Research, Iowa City.
61.Yen, C. L., 1967, “Bed Configuration and Characteristics of Subcritical Flow in a Meandering Channel,” Ph. D. Thesis, University of Iowa, Iowa City, Iowa, USA.
62.Yen, C. L., and Ho, S.Y., 1990, “Bed Evolution in Channel Bends,” Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 4, pp. 544-561.
63.Yen, C. L., and Lee, K. T., 1995, “Bed Topography and Sediment Sorting in Channel Bend with Unsteady Flow,” Journal of Hydraulic Engineering, ASCE, Vol. 121, No. 8, pp. 591-599.
64.Yen, C. L., and Lin, Y. L., 1997, “Variations of Bed Surface Sediment Size in a Channel Bend,” Water, Air and Soil Pollution, Vol. 99, No. 1-4, pp. 81-88.
65.Yen, C. L., Tseng, M. H., and Lai, J. S., 1997, “Simulation of Bridge Scour under Unsteady Flow (in Chinese),” NSC 85-2211-E-002-051, National Science Council, Taipei, Taiwan.
66.Zimmermann, C. and Kennedy, J. F., 1978, “Transverse Bed Slopes in Curved Alluvial Streams,” Journal of Hydraulics Division, ASCE, Vol. 104, No. HY1, pp. 33-48.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top