跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭子軒
研究生(外文):Arthur Tzyy-Hsuang Perng
論文名稱:水下移動式射流引致輸砂及水躍現象
論文名稱(外文):Trenching of underwater sand beds by steadily moving jets
指導教授:卡艾瑋
指導教授(外文):Herv eacute; Capart
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:130
中文關鍵詞:水射輸砂捲增效應淺水理論介面傳輸理論曲線方程水下遙控載具溝渠流水躍
外文關鍵詞:Underwater dredgingTrenching jetErosionEntrainmentInternal hydraulic jumpShallow flow model with interface transferROVs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著水下海事工程的日漸發達,諸如挖砂及埋管等工作需求不斷,操控水下遙控載具的精準度也相對要求提高。本論文針對長期工作之載具其利用射流所造成的自挖填之相關問題,模擬移動式水射條件輔以實驗室量測及觀察水射對輸砂的影響,其中包含了砂與水複雜的互制行為、射流的捲增效應、沖刷及淤積現象等。除了實驗配置外並研究淺水波理論之於射流模擬之可行性,理論之建立除了架構於傳統的連續方程及動量守恆更嘗試聯立能量方程。初步以水面均勻射流及水下異重射流做理論根基的基礎,整合介面分層以及傳輸理論將統御方程延伸應用在曲線座標裡。並針對水下穩定的作業提供一維穩定解之操作模式。理論計算將和實驗資料一一驗證,除了寄望對於沖刷深度及長度等工程實際問題提供有效之模式預測,並發現模式可能之侷限性。雖然模式得以驗證水射之於輸砂具薄層流及水躍行為,經由實驗觀察,移動式水射所造成之溝渠流仍有可能發生超出模式之分離流等。
Underwater activities such as extracting sand beds or burying pipelines are getting more and more widespread and remotely operated vehicles (ROVs) are being increasingly used to reach deeper areas. The present thesis examines the behaviour of jetting onto the sediment sand bed by using a trencher-like machine. Complex phenomena of the interaction between water and sand are observed experimentally, including physical processes of erosion, suspension, entrainment and breaching. Starting with two simpler cases of surface current and bottom plume with a slope break, extensions of shallow flow theory are first presented and validated with analytic solutions. To further extend the theory to eroding turbid currents, interface transfer theory and concept of sub-layered shallow flow are integrated in a mathematical curvilinear formulation. The governing equations include conservation laws for continuity, momentum and energy. Simulating the steady flow, numerical calculations and approximate solutions are obtained in moving coordinates attached to the travelling jets. Comparison of theory and experiments include is made for the bed response profiles. Both in the model and the experiment, two possible pattern of flow are observed, with and without an internal hydraulic jump. In some of the experimental runs, however, phenomena such as flow separation and sand face breaching are observed, which exceed the current scope of the proposed theory.
ABSTRACT i
中文摘要 ii
LIST OF SYMBOLS iii
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xvii

1 INTRODUCTION 1

2 EXPERIMENTS 8
2.1 EXPLORATION EXPERIMENTS 8
2.2 SAND MATERIAL PROPERTIES 14
2.2.1 Material characterization tests 14
2.2.2 Settling column test 16
2.3 TANK 21
2.4 SUCTION DREDGE 24
2.5 JETTING HEADS 26
2.6 CARRIAGE AND ARM 29
2.7 IMAGING MEASUREMENTS 36

3 EXTENDED SHALLOW FLOW THEORY 40
3.1 SURFACE CURRENT 40
3.2 BOTTOM PLUME ALONG RIGID BED 43
3.3 SUB-LAYERED SHALLOW FLOW THEORY 48
3.3.1 Notations and assumptions 48
3.3.2 Governing equations 51
3.3.3 Interface transfer relations 53
3.3.4 Turbulent mass drift and shear stress functions 56
3.3.5 Balance of mechanical energy 58
3.3.6 Synthesis 60

4 STEADY AND TRAVELLING WAVE SOLUTIONS 62
4.1 SURFACE JETS 62
4.2 BOTTOM JETS ALONG RIGID BEDS 65
4.3 TRAVELLING WAVE SOLUTIONS 72
4.3.1 Equations in moving coordinates 72
4.3.2 Characteristic structure 74
4.3.3 Longitudinal flow structure 76
4.4 FLOW AND SOLUTION DETAILS 78
4.4.1 Jet expansion before impingement 78
4.4.2 Trenching front 80
4.4.3 Internal hydraulic jump 82
4.4.4 Passage through the critical section 84
4.4.5 Composite solutions 86

5 COMPARISON OF THEORY AND EXPERIMENTS 91
5.1 EXPERIMENTAL RESULTS 91
5.2 COMPARISON OF THEORY AND EXPERIMENTS 92
5.3 FLOW SEPARATION AND BREACHING EFFECTS 119

6 CONCLUSIONS AND FUTURE WORK 121
6.1 CONCLUSIONS 121
6.2 LIMITATIONS 123
6.3 FUTURE WORK 123

REFERENCES 127
Abbott, M.B. (1979) Computational Hydraulics. Elements of the Theory of Free Surface Flows. Pitman.
Aderibigbe, O.O., and Rajaratnam, N. (1996) Erosion of loose beds by submerged circular impinging vertical turbulent jets. J. Hydr. Res. 34(1), 19-33.
Bagnold, R.A. (1966) An Approach to the Sediment Transport Problem From General Physics. U.S. Geological Survey Professional Paper 422-I, 37 p.
Baines, P.G. (1995) Topographic Effects in Stratified Flows. Cambridge Univ. Press.
Bakhmeteff, B.A. (1932) Hydraulic of Open Channels. McGraw-Hill.
Capart, H., and Young, D.L. (1998) Formation of a jump by the dam-break wave over a granular bed. Journal of Fluid Mechanics 372, 165-187.
Capart, H. (2000) Dam-break induced geomorphic flows and the transition from solid- to fluid-like behaviour across evolving interfaces. PhD thesis, Univ. cath. Louvain, Belgium.
Capart, H. (2002) Sharp interface theory of shallow turbidity currents. Internal research note, National Taiwan University.
Capart, H. (2004) Shallow Flow. Lecture notes, National Taiwan University, 81 p.
Charbeneau, R.J. (2000) Groundwater Hydraulics and Pollutant Transport. Prentice-Hall.
Chen, C.J. and Rodi, W. (1980) Vertical Buoyant Jets: A Review of Experimental Data. Pergamon Press.
Dronkers, J. (2005) Dynamics of Coastal Systems. World Scientific.
Durbin, P.A. and Pettersson Reif, B.A. (2001) Statistical Theory and Modeling for Turbulent Flows. Wiley.
Ellison, T.H., and Turner, J.S. (1959) Turbulent entrainment in stratified flows. J. Fluid Mech. 6, 423-448.
Fraccarollo, L. and Capart, H. (2002) Riemann wave description of erosional dam-break flows. J. Fluid Mech. 461, 183-228.
Fredsøe, J. and Deigaard, R. (1992) Mechanics of Coastal Sediment Transport. World Scientific.
Garcia, M.H. (1993) Hydraulic jumps in sediment-driven bottom currents. J. Hydr. Eng. 119(10), 1094-1117.
Hoffman, A.L. (1967) A single fluid model for shock formation in MHD shock tubes. J. Plasma Phys. 1, 193-207.
Hogg, A.J., Huppert, H.E., and Dade, W.B. (1997) Erosion by planar turbulent wall jets. J. Fluid Mech. 338, 317-340.
Holland, D.M., Rosales, R.R., Stefanica, D., and Tabak, E.G. (2002) Internal hydraulic jumps and mixing in two-layer flows. J. Fluid Mech. 470, 63-83.
Hydon, P.E. (2000) Symmetry Methods for Differential Equations. Cambridge Univ. Press.
Jirka, G.H. (2006) Integral model for turbulent buoyant jets in unbounded stratified flows. Part 2: Plane jet dynamics resulting from multiport diffuser jets. Environmental Fluid Mechanics 6(1), 43-100.
Knox, D., Krumholz, D.J. and Clausner, J.E. (1994) Water injection dredging in the United States. In Proc. Second Int. Conf. on Dredging and Dredged Material Placement (ed. E. Clark McNair, Jr.), pp. 847-856, ASCE.
Kobayashi, N. and Johnson, B.D. (2001) Sand suspension, storage, advection, and settling in surf and swash zones. J. Geophys. Res. 106(C5), 9363-9376.
Kobayashi, N. and Tega, Y. (2002) Sand suspension and transport on equilibrium beach. J. Waterw., Port, Coastal, Ocean Eng. 128(6), 239-248.
Kolmogorov, A.N. (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, 301-305. [See also the English translation in Proc. R. Soc. Lond. A (1991) 434, 9-13.]
Lin, C.K. (2005) Route planning for the 161 kV power cable between Taiwan and Penghu. CECI Engineering Consultants (in Chinese).
Machin, J. (2001) Recent Research on Cable Jet Burial. Perry Slingsby Systems, Inc., Jupiter, Florida.
Mastbergen, D.R., and Van den Berg, J.H. (2003) Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 50, 625-637.
Mathieu, J. and Scott, J. (2000) An Introduction to Turbulent Flow. Cambridge Univ. Press.
Mazurek, K.A., Rajaratnam, N., and Sego, D.C. (2003) Scour of a cohesive soil by submerged plane turbulent wall jets. J. Hydr. Res. 41(2), 195-206.
Mohamed, M.S., and McCorquodale, J.A. (1992) Short-term local scour. J. Hydr. Res. 30(5), 685-699.
Parker, G., Fukushima, Y. and Pantin, H.M (1986) Self-accelerating turbidity currents. J. Fluid Mech. 171, 145-181.
Rajaratnam, N. (1981) Erosion by plane turbulent jets. J. Hydr. Res. 19(4), 339-358.
Raubenheimer, R., Elgar, S. and Guza, T. (2004) Observations of swash zone velocities: A note on friction coefficients. J. Geophys. Res. 109(C01027), 1-8.
Richardson, J.F. and Zaki W.N. (1954) Sedimentation and fluidisation, Part 1. Trans. Inst. Chem. Eng. 32, 35-53.
Rouse, H. (1937) Modern Conceptions of the Mechanics of Fluid Turbulence. Transactions ASCE 102, 532-536.
Rouse, H. (1940) Criteria for Similarity in the Transportation of Sediment. Proc. Hydraulics Conf., Univ. of Iowa Studies in Engineering, Bulletin 20, pp. 32-49.
Russell, H.A.J., and Arnott, R.W.C. 2003 Hydraulic-jump and hyperconconcentrated-flow deposits of a glacigenic subaqueous fan: Oak Ridges Moraine, Southern Ontario, Canada. J. Sedimentary Res. 73(6), 887-905.
Stoker, J.J. (1957) Water waves. Interscience.
Strang, G. (1988) Linear Algebra and its Applications. Brooks/Cole.
Van den Berg, J.H., Van Gelder, A., and Mastbergen, D.R. (2002) The importance of breaching as a mechanism of subaqueous slope failure in fine sand. Sedimentology 49, 81-95.
van Melkebeek, E. (2002) Pre-Trenching, Pre-Sweeping and Backfilling for the 36” Offshore Pipeline Project in Taiwan. Terra et Aqua - International Journal on Public Works, Ports, and Waterway Developments 87(3), 19-25.
van Rijn, L.C. (1984) Sediment transport, part II: Suspended load transport. J. Hydr. Eng. 110(11), 1613-1641.
Whitham, G.B. (1974) Linear and Nonlinear Waves. Wiley.
Zank, G.P., Zhou, Y., Matthaeus, W.H., and Rice, W.K.M. (2002) The interaction of turbulence with shock waves: A basic model. Phys. Fluids 14(11), 3766-3774.
Zanker, K.J., and Bonnington, S.T. (1967) Recent research development in hydraulic dredging. In: J.T. Williams, G.L. Hargreaves, and J.E.G. Palmer (eds) Dredging, Institution of Civil Engineers in London, pp. 81-96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top