(18.206.177.17) 您好!臺灣時間:2021/04/16 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍泰蔚
研究生(外文):Tai-Wei Lan
論文名稱:以光纖反應器直接光催化分解氮氧化物
論文名稱(外文):Direct decomposition of NOx with optical fiber reactor
指導教授:吳紀聖
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:104
中文關鍵詞:光纖反應器一氧化氮二氧化鈦
外文關鍵詞:Optical fiber reactorNitric oxideTiO2Silver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為減少由車輛及內燃機產生的廢氣,本研究目的為以光纖反應器去除氣相中污染物NOx,模擬工廠鍋爐尾氣的溫度,成份等參數做一試驗性質的評量,以達到減少環境污染的目的。為區分各觸媒分解NOx的光催化活性,在以批式之方法試驗觸媒後,TiO2觸媒膜覆於光纖上進行流動系統的反應。觸媒的製備以熱水解法製備含銀之二氧化鈦覆膜液,以浸漬覆膜法覆膜0.1mm外徑之光纖。由SEM之檢測,光纖表面鍍膜之TiO2觸媒層約爲54nm,Ag/TiO2之觸媒則約為44nm的厚度,以紫外-可見光吸收光譜偵測,吸收位置大約在350nm附近。本研究之流動系統改變光強度、氧濃度、溫度等參數並以初濃度為246ppm之NOx,通入可容納117根光纖之光纖反應器,滯留時間為64分鐘,達平衡後打開紫外光源並持續照光數小時;產物流以NOx分析儀器偵測氣相NOx、NO、NO2濃度的變化,實驗發現,光強度提升去除效率隨之增加。含銀0.5wt%之TiO2觸媒於光強度6W/cm2,氧氣9%體積分率,溫度160℃可得本實驗系統最好之去除效率5.22%。
To reduce the emissions of NOx caused by traffic emissions and internal combustion engines, the NOx removal using photoreactor has been investigated. An optical fiber photoreactor was studied for the photodecomposition of NOx under a steady state flow system. A batch also was performed to classify photocatalytic efficiency of different catalysts for decomposing of NOx. Based on the batch data, the TiO2-coated optical fiber photoreactor was built and studied in order to optimize different parameters such as temperature, O2 volume ratio and light intensity. Hence the optical fiber reactor may achieve a practical removal of the NOx. The titanium oxide sol for dip-coating on the optical fiber was prepared according to the procedures of modified hydrothermal synthesis previously. The thickness of the TiO2 and Ag/TiO2 film prepared by modified hydrothermal method on an optical fiber were about 54nm and 44nm estimated by SEM, respectively. The UV-vis spectra showed that pre-edge of adsorption peak located at about 350nm. In the photocatalytic reaction, the concentration of NOx reactant gas was 246ppm and the retention time was about 64min. A NOx analyzer was used to measure the NO, NOx, and NO2 concentrations. After reaching steady state, UV irradiation was turned on and continued for several hours. The experimental data revealed that the removal of NOx was found to increase as the intensity of the incident light intensity increased. The optimal catalyst and reaction conditions were observed at the 0.5wt%-Ag/TiO2 catalyst and a reaction temperature 160℃. The conversion of NOx was 5.22%.
致謝
摘要 Ι
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅶ
表目錄 Ⅹ
1緒論 1
2 文獻回顧 2
2-1 NOx的簡介 3
2-2 分解氣相中污染物NOx的技術 3
2-2-1以還原劑去除NOx 3
2-2-2 直接熱分解 4
2-2-3 光催化去除NOx 9
2-3二氧化鈦光催化結構 11
2-3-1 二氧化鈦光催化去除NOx 12
2-3-2 嵌置銀於二氧化鈦去除NOx 15
2-4 二氧化鈦薄膜製備方法 16
2-4-1二氧化鈦薄膜製備方法 16
2-4-2 溶膠凝膠法、熱水解法製備二氧化鈦 16
2-4-3 製備含銀觸媒 18
2-4-4 PEG效應 19
2-5 光纖反應器 20
3 實驗方法 27
3-1-1藥品 27
3-1-2實驗設備 27
3-1-3 基材清洗 28
3-1-4 覆膜方法 30
3-2儀器規格及觸媒特性分析 32
3-2-1 分析儀器 32
3-2-2紫外光-可見光光譜儀(UV-Visible Spectrophotometer) 32
3-2-3 X光電子能譜儀(Auger/X-ray Induced Photoelectron Spectroscopy,XPS) 34
3-2-4 X光繞射儀(X-ray diffracted spectroscopy) 35
3-2-5 掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, SEM) 38
3-2-6 能量散佈分析儀(Energy-dispersive spectrometer, EDS) 38
3-2-7 傅立葉紅外光譜儀(Fourier-transform infrared spectrophotometer, FTIR) 40
3.3觸媒的製備 41
3-3-1 溶膠凝膠法Ag/TiO2 42
3-3-2 鈦矽混合氧化物 43
3-3-3 TS-1之觸媒製備流程 44
3-3-4含釩之VS-2觸媒 45
3-3-5 熱水解法製備之二氧化鈦系列觸媒 46
3-4反應系統設計 47
3-4-1反應系統管路設計 47
3-4-2 M200E NOx analyzer 49
3-4-3光纖反應器設計 52
3-5 光反應系統實驗方法 56
3-5-1 批式實驗 56
3-5-2 流動系統實驗 58
4結果與討論 59
4-1批式實驗 59
4-2二氧化鈦覆膜液 65
4-3 觸媒的分析 66
4-3-1 UV-vis 66
4-3-2XRD 68
4-3-3 FT-IR 70
4-3-4 XPS 72
4-3-5 SEM 76
4-3-6 EDS 79
4-4光催化反應 80
4-4-1光波長、強度的效應 84
4-4-2溫度的效應 85
4-4-3水分子 86
4-4-4氧氣的效應 88
4-4-5 活化能的計算 90
4-4-6 觸媒的活性 91
5結果與建議 97
References 98
Appendix 103
個人小傳 105


圖目錄
圖2.1 Amirnazmi 和Boudart 假設的NO反應途徑 5
圖2.2 Hall and Li等人提出的機制 8
圖2.3 銅觸媒光催化分解NO的機制 10
圖2-4. 二氧化鈦之anatase相略圖 11
圖2-5 . Ibusuki and Takeuchi的機制 14
圖2-6. 覆膜次數與膜厚關係 16
圖2-7. 循還式流動系統和光纖反應器 20
圖2-8. 光纖反應器 21
圖2-9. 濾板式和蜂巢式光反應器 22
圖2-10. 司乃耳定律圖解 23
圖2-11. 光強度與轉化率關係 25
圖2-12. 膜厚與轉化率的關係 26
圖2-13. 光反應與適當膜厚示意圖 26
圖3-1. 清洗基材之程序 29
圖3-2. 拉伸裝置(a)無刷馬達(b)數位式轉速器(c)驅動器(d)可調變式電阻 31
圖3-3. 繞射示意圖 36
圖 3-4. 二氧化鈦之JCPDS之標準圖譜 (a). anatase (b). rutile 37
圖 3-5. 電子束打擊樣品表面所產生之訊號 39
圖3-6. 溶膠凝膠法製備Ag/TiO2流程圖 42
圖3-7. 鈦矽混氧化物觸媒之製備流程圖 43
圖3-8. TS-1觸媒製備流程圖 44
圖3-9. 含釩之VS-2觸媒製備流程圖 45
圖3-10. 熱水解法製備之二氧化鈦觸媒流程圖 46
圖3-11. 光反應系統設計圖 48
圖3-12 .氮氧化物分析儀原理之示意圖 50
圖3-13 .光反應器示意圖 53
圖3-14. 光源與反應器連接裝置。(a)光源轉接頭。(b)不�袗�圓盤 54
圖3-15. 光源波長分布。(a)320-390nm (b)250-450nm 55
圖3-16. 沖出反應物之濃度對時間作圖 57
圖4-1. 批式測式之結果 –NO 60
圖4-2. 批式測試之結果 –NO2 61
圖4-3. 二氧化鈦觸媒測試之結果 –NO 62
圖4-4. 二氧化鈦觸媒測試之結果 –NO2 63
圖4-5. 觸媒覆膜之UV圖譜 67
圖4-6. 覆膜觸媒之XRD圖譜 69
圖4-7. 含銀0.5wt%之二氧化鈦觸媒FT-IR圖譜 71
圖4-8. Ti之XPS分析圖譜 74
圖4-9. O之XPS分析圖譜 75
圖4-10. 二氧化鈦覆膜於光纖上之SEM圖 77
圖4-11. 二氧化鈦覆膜於光纖上之SEM圖 77
圖4-12. 二氧化鈦覆膜於光纖之截面SEM照片 78
圖4-13. 0.5wt%-Ag/TiO2覆膜於光纖之截面SEM照片 78
圖4-14. 1wt%-Ag/TiO2覆膜於光纖之截面SEM照片 78
圖4-15. 2wt%-Ag/TiO2覆膜於光纖之截面SEM照片 78
圖4-16. 二氧化鈦覆膜於光纖之表面EDS分析 79
圖4-17. 流動系統之分析儀測得NOx之濃度變化 82
圖4-18. 以光纖行流動系統之光反應催化NOx與強度作圖 92
圖4-19. 以光纖行流動系統之光反應催化NOx與溫度作圖 93
圖4-20.以光纖行流動系統之光反應催化NOx與(a)氧氣量作圖及(b)NO2莫耳分率作圖 94、95
圖4-21. ln kapp 與溫度之倒數作圖,觸媒為0.5wt%Ag/TiO2 96
圖 A-1. 以FT-IR分析0.5wt%-Ag/TiO2圖譜,範圍1000cm-1-4000cm-1。 103

表目錄
表2-1.歐洲聯盟排放準則之小客車排放限制 2
表3-1. 混合氣之三福化工分析報告 47
表4-1. 批式測式之數據列表 62
表4-2. 紅外線光譜測定之觸媒前處理步驟 68
表4-3. XPS 定量校正之結果 73
表4-4. 水氣、波長與轉化率之比較 87
表4-5. 光纖反應器之活化能估計 91
[1] J. Zhang, T. Ayusawa, M. Minagawa, K. Kingawa, H. Yamashita, M. Matsuoka, M. Anpo, “Investigations of TiO2 Photocatalysts for the Decomposition of NO in the Flow System”, Journal of Catalysis, 198(2001), 1-8.
[2] T. Sano, N. Negishi, D. Mas, K. Takeuchi, “Photocatalytic Decomposition of N2O on Highly Dispersed Ag+ Ions on TiO2 Prepared by Photodeposition”, Journal of Catalysis, 194(2000), 71-79.
[3] F. Garin, “Mechanism of NOx decomposition”, Applied Catalysis A: General, 222(2001) 183-219.
[4] M. Anpo, “Approach to photocatalysis at the molecular level Design of photocatalysts, detection of intermediate species, and reaction mechanisms”, Solar Energy Materials and Solar Cells, 38(1995) 221-228.
[5] M. D. Amiridis, I. E. Wachs, G. Deo, J. M. Jehng, D. S. Kim, “Reactivity of V2O5 Catalysts for the Selective Catalytic Reduction of NO by NH3: Influence of Vanadia Loading, H2O, and SO2”, Journal of Catalysis, 161(1996) 247-253.
[6] X. Zhang, B. Arden, Waltes, M. A. Vannice, “NO Adsorption, Decomposition, and Reduction by Methane over Rare Earth Oxides”, Journal of Catalysis, 155(1995) 290-302.
[7] A. W. Ayoer, S. C. Larasen, A. Reimer, A. T. Bell, “An Infrared Study of NO Decomposition over Cu-ZSM5”, Journal of Catalysis, 157(1995) 592-602.
[8] A. T. Bell, “Experimental and theoretical studies of NO decomposition and reduction over metal-exchanged ZSM-5”, Catalysis Today, 38(1997) 151-156.
[9] Y. F. Cheng, J. G. McCarty, “Isotopic Study of NOx Decomposition over Cu- or Co-Exchanged ZSM-5 Zeolite Catalysts”, Journal of Catalysis, 165(1997) 1-11.
[10] Y. Li, J. N. Armor, “Selective Reduction NOx by Mehtane on Co-Ferrierites”, Journal of Catalysis, 150(1994) 376-387.
[11] W. S. Ju, M. Matsuoka, K. Iino, H.Yamashita, M. Anpo, “The Local Structures of Silver(I) Ion Catalysts Anchored within Zeolite Cavities and Their Photocatalytic Reactivities for the Elimination of N2O into N2 and O2”, Journal of Physical Chemistry B, 108(2004) 2128-2133.
[12] M. Anpo, S. G. Zhang, H. Mishima, M. Matsuoka, H. Yamashita, “Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature”, Catalysis Today, 39(1997) 159-168.
[13] S. Sen, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois, D. Chaumont, “Investigation on sol-gel synthesized Ag-doped TiO2 cermet thin films”, Thin Solid films, 474(2005) 245-249.
[14] Y. V. Zubavichus, Y. L. Slovokhotov, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Grátzel, V. Shklover, “Structural Characterization of Solar Cell Prototypes Based on Nanocrystalline TiO2 Anatase Sensitized with Ru Complexes. X-ray Diffraction, XPS, and XAFS Spectroscopy Study”, Chemical Material, 14(2002) 3556-3563.
[15] J. Zhang, Y. Hu, M. Matsuoka, H. Yamashita, M. Minagawa, H. Hidaka, M. Anpo, “Relationship between the Local Structures of Titanium Oxide Photocatalysts and Their Reactivities in the Decomposition of NO”, Journal of Physical Chemistry. B, 105(2001) 8395-8398.
[16] M. Anpo, M. Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operation under visible light irradiation”, Journal of Catalysis, 216(2003) 505-516.
[17] H. Yamashita, Y. Iechihashi, S. G. Zhang, Y. Matsumura, Y. Souma, T. Tatsumi, M.Anpo, “Photocatalytic decomposition of NO at 275K on titanium oxide catalysts anchored within zeolite cavities and framework”, Applied Surface Science, 121/122(1997) 305-309.
[18] 陳威誌,雙金屬觸媒Pt-Sn/BN在巴豆醛選擇性氫化之研究,國立台灣大學碩士論文,2004,p34-35。
[19] S. Zhang, N. Fujii, Y. Nossaka, “The dispersion effect of TiO2 loaded over ZSM-5 zeolite”, Journal of Molecular Catalysis A : Chemical, 129(1998) 219-224.
[20] C. Kormann, D. W. Bahnemann, M. R. Hoffmann, “Photocatalytic Production of H2O2 and Organic Peroxides In Aqueous Suspensions of TiO2, ZnO, and Desert Sand”, Environmental Science & Technology, 22(1988), 798-806.
[21] K. Hashimoto, K. Wasada, N. Toukai, H. Kominami, Y. Kera, “Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas”, Journal of Photochemistry and Photobiology A: Chemistry, 136(2000) 103-109.
[22] J. C. Yu, J. Lin, D. Lo, S. K. Lam, “Influence of Thermal Treatment on the Adsorption of Ocxygen and Photocatalytic Activity of TiO2”, Langmuir, 16(2000) 7304-7308.
[23] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal”, Journal of Molecular Catalysis A: Chemical, 161(2000) 205-212.
[24] Y. Komazaki, H. Shimizu, S. Tanaka, “A new measurement method for nitrogen oxides in the air using an annular diffusion scrubber coated with titanium dioxide”, Atmospheric Environment, 33(1999) 4363-4371.
[25] W. Choi, J. Y. Ko, H. Park, J. S. Chung, “Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone”, Applied Catalysis B: Environmental, 31(2001) 209-220.
[26] O. Harizanov, A. Harizanova, “Development and investigqtionof sol-gel solutions for the formation of TiO2 coatings”, Solar Energy Material & Solar Cells, 63(2000) 185-195.
[27] S. Bu, Z. Jin, X. Liu, L. Yang, Z. Cheng, “Fabrication of TiO2 porous thin films using peg templates and chemistry of the process”, Materials Chemistry and Physics, 88(2004) 273-279.
[28] C. Legrand-Buscema, C. Malibert, S.Bach, “Elaboration and characterization of thin films of TiO2 prepared by sol-gel process”, Thin Solid Films, 418(2002) 79-83.
[29] T. H. Lim, S. M. Jeong, S. D. Kim, J. Gyenis, “Photocatalytic decomposition of NO by TiO2 particles”, Journal of Photochemistry and Photobiology A: Chemistry, 134(2000) 209-217.
[30] M. Epifani, C. Giannini, L. Tapfer, L. Vasanel, “Sol-Gel Synthesis and Characterization of Ag and Au Nanoparticles in SiO2, TiO2, and ZrO2 Thin Film”, Journal of American. Ceramic Society, 83(2000) 2385-2393.
[31] S. Horikoshi, N.Watanabe, H. Onishi, H. Hidaka, N. Serpone, “Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiberglass cloth”, Applied Catalysis B: Environmental, 37(2002) 117-129.
[32] N. J. Peill, L. Bourne, M. R. Hoffmann, “Iron(III)-doped Q-sized TiO2 coatings in a fiber-optic cable photochemical reactor”, Journal of Photochemistry and Photobiology A: Chemistry, 108(1997) 221-228.
[33] J. Zhang, K. H. Au, Z. Q. Zhu, S. O’Shea, “Sol-gel preparation of poly(ethylene glycol) doped indium tin oxide thin films for sensing applications”, Optical Materials, 26(2004) 47-53.
[34] K. Hofstadler, R. Bauer, “New Reactor Design for Photoctalytic Wastewater Treatment with TiO2 Immobillzed on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol”, Environmental Science Technology, 28(1994) 670-674.
[35] R. D. Sun, A. Nakajima, I. Watanabe, T. Watanabe, K. Hashimoto, “TiO2 coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds”, Journal of Photochemistry and Photobiology A: Chemistry, 136(2000) 111-116.
[36] A. Danion, J. Disdier, C. Guillard, F. Abdelmalek, N. Jafrezic-Renault, “Characterization and study of a single-TiO2-coated optical fiber reactor”, Applied Catalysis B: Environmental, 52(2004) 213-223.
[37] C. Anderson, A. J. Bard, “Improved Photocatalytic Activity and Characterization of Mixed TiO2/Al2O3 Materials”, Journal of Physical Chemistry. B, 101(1996) 2611-2616.
[38] 林宏明,以光纖反應器進行二氧化碳光催化還原,國立台灣大學碩士論文,2004,p40-41.
[39] 葉君棣,陳志堅 譯,X射線光電子分光儀應用手冊,新竹黎明書店,1983,p1-20.
[40] 柯以侃 編,吳明珠 校訂,儀器分析,文京圖書有限公司,總經銷大揚出版社,1997,p111.
[41] 許瓊姿,蔡增光,潘扶民,穿透式電子顯微鏡微區成份分析技術簡介,國家毫微米元件實驗室,毫微米通訊,第九卷,p23,2002。
[42] 張家全,任曉旭,國科會電子顯微鏡及EDS儀器分析操作手冊,1996/1/22。
[43] 曾怡享,奈米金屬氧化鈦觸媒光昜還原二氧化碳,國立台灣大學博士論文,2003,p.24-25。
[44] 陳志賢,無污染凝膠/溶膠高分子製程技術,中國紡織工業研究中心委託學界研究計畫期末成果報告,2001,p7-10。
[45] C. Anderson, A. J. Bard, “An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis”, Journal of Physical Chemistry. B, 99(1995) 9882-9885.
[46] A. Thangaraj, S. Sivasanker, P. Ratnasamy, “Catalystic Properties of Crystalline Titanium Silicalites”, Journal of Catalysis, 131(1991) 394-400.
[47] M. Anpo, S. G. Zhang, S. Higashimoto, M. Matsuoka, H. Yamashita, “Characterization of the Local Structure of the Vanadium Silicalite(VS-2) Catalyst and Its Photocatalytic Reactivity for the Decomposition of NO into N2 and O2”, Journal of Physical Chemistry. B, 103(1999) 9295-9301.
[48] P. R. H. P. Rao, A. V. Ramaswamy, P. Ratnasamy, “Synthesis and Catalytic Properties of Crystalline, Microporous Vanadium Silicates with MEL Sturcture”, Journal of Catalysis, 137(1992) 225-231.
[49] C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, Gratzel, “Nanocrystlaaine titanium Oxide electrodes for photovoltaic applications”, Journal of the American Ceramic Society, 80(1997) 3157-3171.
[50] “Instruction Manual Chemiluminescence Nitrogen Oxides Analyzer Model 200E”, T-API, 2003/3/19.
[51] C. J. Barbe, F.Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, Gratzel, “Nanocrystalline titanium Oxide electrodes for photovoltaic applications”, Journal of the American Ceramic Society, 80 [12](1997)3157-3171。
[52] I. N. Martyanov, K. J. Klabunde, “Compatratie study of TiO2 particles in powderform and as a thin nanostructured film on quartz”, Journal of Catalysis 225(2004) 408-416.
[53] B. Erdem, R. A. Hunsiscker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, M. S. El-Aasser, “XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation”, Langmuir, 17(2001) 2664-2669.
[54] W. Grunert, A. Brukner, H. Hofmeister, P. Claus, “Structural Properties of Ag/TiO2 Catalysts for Acrolein Hydrogenation”, Journal of Physical Chemistry. B, 108(2004) 5709-5717.
[55] J. Zhang, M. Minagawa, T. Ayusawa, S. Natarajan, H. Yamashita, M. Matsuoka, M. Anpo, “In Situ Investigation of the Photocatalytic Decompositon of NO on the Ti-HMS under Flow and Closed Reaction Systems”, Journal of Physical. Chemistry. B, 104(2000) 11501-11505.
[56] R. Thampi, P. Ruterana, M. Gratzel, “CO-NO reaction” Thermal and Photoactivation of TiO2-Supported Ru, Rh, and Cu Catalysts for CO-NO Reaction”, Journal of Catalysis, 126(1990) 571-590.
[57] N. W. Cant, J. R. Cole, “Photocatalysis of Ammonia and Nitric Oxide On TiO2 Surfaces”, Journal of Catalysis, 134(1992) 317-326.
[58] N. N. Lichtin, Vijayakumar, M. Kallambella, Dong, Junchang, “Photopromoted method for decomposing oxides of nitrogen into environmentally compatible products”, United States Patent, 1Dec 25, 1990, Patent no. 4980040.
[59] B. V. Amsterdam, “Removal of low concentration nitrogen oxide through photoassisted heterogeneous catalysis”, Journal of Molecular Catalysis, 88(1994) 93-102.
[60] L. Kundakovic, M. Flytzani-Stenhanopoulos, “Deep oxidation of methane over zirconia supported Ag catalysts”, Applied Catalysis A: General, 183(1999) 35-51.
[61] K. I. Hadjiivanov, “IR study of CO and NOx sorption on Ag-ZSM-5”, Microporous and Mesoporous Materials, 24(1998) 41-49.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔