跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱大任
研究生(外文):Da-Ren Chiou
論文名稱:向列型液晶4-n-pentyl-4’-cyanobiphenyl在具微溝槽結構的表面上之排列行為研究
論文名稱(外文):Nematic liquid crystal 4-n-pentyl-4’-cyanobiphenyl alignment on micro-grooved surfaces
指導教授:陳立仁陳立仁引用關係
指導教授(外文):Li-Jen Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:146
中文關鍵詞:向列型液晶微溝槽結構液晶排列
外文關鍵詞:Nematic liquid crystalmicro-grooved surfacesliquid crystal alignment
相關次數:
  • 被引用被引用:6
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本研究中,我們以軟性模板壓印法(soft embossing)製備聚亞醯胺微溝槽表面。此法提供了相當方便迅速的方式於高分子表面上製作線路圖案(pattern)。而吾人將聚亞醯胺微溝槽表面合成液晶盒(liquid crystal cell)之後發現,甚至在溝槽寬達3微米的情況之下4-n-pentyl-4’-cyanobiphenyl (5CB) 液晶分子仍舊可以沿溝槽方向呈現均勻的水平排列。而我們也發現其錨附能(anchoring energy)大於利用定向摩擦法(rubbing)所處理的表面。此外,我們也利用水平配向與垂直配向之聚亞醯胺前驅物(prepolymer)的混摻,來調整表面的親疏水性以調控液晶預傾角(pretilt angle)。
另外,我們也同樣利用軟性模板壓印法壓印二氧化矽的溶膠-凝膠前驅物(silica sol-gel precursor)以製備二氧化矽微溝槽表面。此二氧化矽微溝槽表面可誘導5CB液晶分子沿溝槽方向呈現均勻的水平排列,但其缺乏預傾角。故吾人進一步使用不同末端官能基的有機矽烷在二氧化矽微溝槽表面上形成自聚性分子膜(self-assembled monolayers, SAMs),以進行5CB液晶分子的預傾角調控。
吾人也同時觀察5CB液晶分子於具有微溝槽結構的有機矽烷自聚性分子膜表面的排列行為。我們先使用軟性模板壓印法壓印出二氧化矽微溝槽表面,接著在在二氧化矽微溝槽表面形成有機矽烷的自聚性分子膜。藉著軟性模板壓印法及具有各種不同末端官能基的有機矽烷材料,吾人可獨立地探討表面起伏(surface topography)與表面極性(surface polarity)對於液晶分子排列的影響。而藉由表面極性的調整,我們可以在固定的表面起伏與液晶種類條件下控制液晶預傾角。吾人成功地於0o到90o的區間範圍內調控了5CB液晶分子的預傾角,且經由其與水前進角的關聯,我們更進一步確定了在固定的液晶種類及表面起伏(surface topography)條件下,表面化學性質的確是影響液晶分子排列的主因。
最後,我們使用微觸印刷法(micro-contact printing)製備出具有不同化學性質的微米級圖案複合表面及具微米級圖案的聚苯胺表面。藉由交錯的表面性質,我們可控制在某特定區域內5CB液晶分子的排列。經過正交偏光顯微鏡的觀察,吾人發現5CB液晶分子在玻璃、n-phenylaminopropyltrimethoxysilane (PMTS) 自聚性分子膜及聚苯胺的表面上皆呈現水平排列,而其在octadecyltrichlorosilane (OTS) 自聚性分子膜表面上呈現垂直排列。此乃因其表面能量或表面極性的差異所造成。利用此現象,我們成功地利用微觸印刷法達成5CB液晶分子的多域(multi-domain)配向。
In this work, the soft embossing method is proposed to fabricate grating structure on polyimide surfaces. This method provides a convenient and rapid way to pattern polymer surfaces. These grating polyimide surfaces are assembled to form liquid crystal cells. It is found that the liquid crystal 4-n-pentyl-4’-cyanobiphenyl (5CB) director uniformly aligns along the groove direction even when the grating width is up to 3 μm. The anchoring energy of these grating polyimide surfaces is higher than that of the typical rubbed surfaces. We also mixed the planar alignment type polyimide prepolymer and homeotropic alignment type one to modify the surface property to successfully adjust the liquid crystal pretilt angle.
The square-wave grating silica surfaces are also fabricated by soft embossing silica sol-gel precursor on glass substrates with an elastomeric polydimethylsiloxane mould. The patterned silica surface could induce the planar alignment of liquid crystal 5CB along the direction of micro-grooves but with no pretilt angle. The pretilt angle of 5CBs is adjusted from 0o to 90o by the further deposition of organosilane self-assembled monolayers with different functional end-groups on the patterned silica surfaces.
Liquid crystal alignment was also investigated on the micro-grooved silica surfaces covered with organosilanes. We fabricated micro-grooved silica surfaces by soft embossing method followed by forming self-assembled monolayers (SAMs) of organosilanes on these micro-grooved silica surfaces. Using the soft embossing method and the broad range of the end-groups of the organosilanes, we could investigate the surface topography and surface polarity effects on the supported liquid crystals independently. By means of the surface polarity effects, we could control the liquid crystal pretilt angles by the modifications of surface chemical properties under fixed surface topography and liquid crystal type. We successfully adjusted the liquid crystal pretilt angle over the whole range from 0o to 90o by tuning the hydrophobicity of the surfaces. The correlations between water contact angle and liquid crystal pretilt angle further confirm that the liquid crystal pretilt angle is indeed only affected by the surface polarity under the same surface topography and liquid crystal type.
Finally, we fabricated patterned chemical functionality surfaces and patterned polyaniline surfaces by micro-contact printing method. With the resulting alternative surface polarity, we can control the alignment of nematic liquid crystals 5CBs on these specific regions. It is found that 5CBs show planar alignment on glass surfaces, n-phenylaminopropyltrimethoxysilane (PMTS) SAMs and polyaniline surfaces according to the polarized optical microscopy, whereas homeotropic alignment on octadecyltrichlorosilane (OTS) SAMs. This is due to the differences of the surface energies or surface polarities between the polar SAMs as well as polyaniline and the OTS SAMs. From this viewpoint, we could make multi-domain alignment of nematic liquid crystals by micro-contact printing method.
中文摘要 I
英文摘要 III
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 液晶簡介 2
1-3 液晶的基本物理特性 3
1-3-1 液晶分子排列的秩序參數 4
1-3-2 液晶的複折射性和光電物性 5
1-3-3 液晶的彈性連續理論 6
1-4 液晶顯示原理 7
1-5 液晶分子的配向方法 8
1-6 研究動機 13
第二章 文獻回顧 23
2-1 液晶分子排列的機制 23
2-1-1 溝槽理論 23
2-1-2 高分子主鏈旋轉重排理論 27
2-1-3 電荷交互作用力理論 28
2-1-4 表面粗糙度理論 28
2-2 液晶分子的預傾角調控 29
2-3 液晶分子的多域配向 31
第三章 實驗藥品、設備與實驗方法 36
3-1 實驗藥品 36
3-2 實驗設備 40
3-2-1 製備矽晶母片所需儀器 40
3-2-2 製備自聚性分子膜所需設備 40
3-2-3 分析薄膜表面所需儀器 41
3-2-4 配向膜處理及液晶盒探測所需儀器 44
3-3 實驗方法 47
3-3-1 矽晶母片(master)的製作 48
3-3-2 玻璃器皿的清潔 54
3-3-3 矽晶母片表面預處理 54
3-3-4 軟性模板或橡皮圖章的製造 58
3-3-5 軟性模板壓印法(soft embossing)製備聚亞醯胺微溝槽表面 59
3-3-6 軟性模板壓印法(soft embossing)製備二氧化矽微溝槽表面 59
3-3-7 於二氧化矽微溝槽表面上有機矽烷自聚性分子膜的製備 60
3-3-8 於二氧化矽微溝槽表面上親疏水性有機矽烷混合自聚性分子膜的製備 61
3-3-9 以微觸印刷法製備具微米級圖案的複合表面 62
3-3-10 液晶盒的製作、液晶排列的觀察及預傾角量測 63
3-3-11 錨附能(anchoring energy)的量測 64
3-3-12 臨界表面張力的量測 65
第四章 向列型液晶4-n-pentyl-4’-cyanobiphenyl在聚亞醯胺微溝槽表面上的配向作用及預傾角調控 77
4-1 向列型液晶4-n-pentyl-4’-cyanobiphenyl在聚亞醯胺微溝槽表面上的配向作用 77
4-2 向列型液晶4-n-pentyl-4’-cyanobiphenyl在聚亞醯胺微溝槽表面上的預傾角調控 82
第五章 向列型液晶4-n-pentyl-4’-cyanobiphenyl於含方形微溝槽結構的二氧化矽表面上之配向作用 91
第六章 向列型液晶4-n-pentyl-4’-cyanobiphenyl在有機矽烷於方形微溝槽結構的二氧化矽基材上所形成的自聚性分子膜上之配向作用及預傾角調控 102

6-1 向列型液晶分子於具有極性末端官能基的有機矽烷自聚性分子膜微溝槽表面上的配向性 103
6-2 向列型液晶分子於具有甲基末端官能基的有機矽烷自聚性分子膜微溝槽表面上的配向性 105
6-3 液晶分子在有機矽烷自聚性分子膜微溝槽表面上的預傾角 108
第七章 利用微觸印刷法進行向列型液晶4-n-pentyl-4’-cyanobiphenyl的多域配向 124
7-1 向列型液晶4-n-pentyl-4’-cyanobiphenyl 於具有不同化學性質的微米級圖案自聚性單分子膜表面的排列方式 126
7-2 向列型液晶4-n-pentyl-4’-cyanobiphenyl 於聚苯胺微米級圖案微溝槽表面的排列方式 128
第八章 結論 136
參考文獻 140
Aoyama, H., Y. Yamazaki, N. Matsuura, H. Mada and S. Kobayashi, Mol. Cryst. Liq. Cryst. 1981, 72, 217.
Baur, G., V. Wittwer and D. W. Berreman, Phys. Lett. 1976, 56A, 142.
Becker, M. E., R. A. Kilian, B. B. Kasmowski and D. A. Mlysnski, Mol. Cryst. Liq. Cryst. 1986, 132, 167.
Behdani, M., A. Rastegar, S. H. Keshmiri, S. I. Missat, E. Vlieg and Th. Rasing, Appl. Phys. Lett. 2002, 80, 4635.
Behdani, M., S. H. Keshmiri, S. Soria, M. A. Bader, J. Ihlemann, G. Marowsky and Th. Rasing, Appl. Phys. Lett. 2003, 82, 2553.
Berreman, D. W., Mol. Cryst. Liq. Cryst. 1973, 23, 215.
Berreman, D. W., Phys. Rev. Lett. 1972, 28, 1683.
Born and Wolf, “Principles of Optics”, Chapter 14, sixth Edition, Oxford, Pergamon Press, 1980.
Bryan-Brown, G. P. and I. C. Sage, Liq. Cryst. 1996, 20, 825.
Castellano, J. A., Mol. Cryst. Liq. Cryst. 1983, 94, 33.
Chandrasekhar, S., “Liquid Crystal”, Cambridge University Press, 1977.
Chatelaine, P., Bull. Soc. Franc. Crist. 1943, 66, 105.
Chaudhari, P. et al., Nature 2001, 411, 56.
Cheng, J. and G. D. Boyd, Appl. Phys. Lett. 1979, 35, 444.
Chou, S. Y., P. R. Krauss and P. J. Renstrom, Science 1996, 272, 85.
Chung, D. H., T. Fukuda, Y. Takanishi, K. Ishikawa, H. Matsuda, H. Takezoe and M. A. Osipov, J. Appl. Phys. 2002, 92, 1841.
Clark, N. A. and S. T. Lagerwall, Appl. Phys. Lett. 1980, 36, 899.
Creagh, L. T. and A. R. Kmetz, Mol. Cryst. Liq. Cryst. 1973, 24, 59.
Evans, S. D., H. Allinson, N. Boden, T. M. Flynn and J. R. Henderson, J. Phys. Chem. B 1997, 101, 2143.
Fergason, J. L., Sci American 1964, 211, 77.
Frank, C. W., “Organic Thin Films – Structure and Application”, Chapter 7, Oxford University Press, American Chemical Society, Washington, DC, 1997.
Frank, F. C., Disc. Faraday Soc. 1958, 25, 19.
Geary, J. M., J. W. Goodby, A. R. Kmetz and J. S. Patel, J. Appl. Phys. 1987, 62, 4100.
Gibbons, W. M., P. J. Shannon, S. T. Sun and B. J. Swetlin, Nature 1991, 351, 49.
Gupta, V. K. and N. L. Abbott, Langmuir 1996, 12, 2587.
Gupta, V. K. and N. L. Abbott, Phys. Rev. E 1996, 54, R4540.
Gupta, V. K. and N. L. Abbott, Science 1997, 276, 1533.
Gupta, V. K., W. J. Miller, C. L. Pike and N. L. Abbott, Chem. Mater. 1996, 8, 1366.
Ha, K. and J. L. West, Liq. Cryst. 2004, 31, 753.
Ha, N. Y., Y. K. Woo, B. Park and J. W. Wu, Adv. Mater. 2004, 16, 1725.
Han, K. Y., T. Miyashita and T. Uchida, Jpn. J. Appl. Phys. Part2, 1993, 32, L277.
Hatoh, H., K. Shohara, Y. Kinoshita and N. Ookoshi, Appl. Phys. Lett. 1993, 63, 3577.
Huang, Z., P.-C. Wang, A. G. MacDiarmid, Y. Xia and G. Whitesides, Langmuir 1997, 13, 6480.
Janning, J. L., Appl. Phys. Lett. 1972, 21, 173.
Kahn, F. J., G. N. Taylor and H. Schonhorn, Proc. IEE, 1973, 61, 823.
Kumar, S., J.-H. Kim and Y. Shi, Phys. Rev. Lett. 2005, PRL 94, 077803.
Lee, B. and N. A. Clark, Science 2001, 291, 2576.
Lee, G. J., J. J. Lee, G. Lee, J. S. Kim, U. J. Hwang, C. H. Oh, S. H. Song, P. S. Kim and Y. P. Lee, J. Kor. Phys. Soc. 2004, 45, 71.
Lee, K.-W., A. Lien, J. H. Stathis and S.-H. Paek, Jpn. J. Appl. Phys. 1997, 36, 3591.
Lee, K.-W., S.-H. Paek, A. Lien, C. J. Durning and H. Fukuro, Macromolecules, 1996, 29, 8894.
Li, M., H. Tan, L. Chen, J. Wang and S. Y. Chou, J. Vac. Sci. Technol. B 2003, 21, 660.
Lu, X. M., Q. H. Lu, Z. K. Zhu, J. Yin and Z. G. Wang, Chem. Phys. Lett. 2003, 377, 433.
Macdonald, B. F., W. Zheng and R. J. Cole, J. Appl. Phys. 2003, 93, 4442.
Miller, W. J. and N. L. Abbott, Langmuir 1997, 13, 7106.
Moore, J. A. and A. N. Dasheff, Chem. Mater. 1988, 1, 163.
Myrvold, B. O. and K. Kondo, Liq. Cryst. 1995, 18, 271.
Nakajima, K., H. Wakemoto, S. Sato, F. Yokotani, S. Ishihara and Y. Matsuo, Mol. Cryst. Liq. Cryst. 1990, 180B, 223.
Newsome, C. J. and M. O’Neill, J. Appl. Phys. 2002, 92, 1752.
Nozaki, C., N. Imamura and Y. Sano, Jpn. J. Appl. Phys. 1993, 32, 4352.
Oseen, C. W., Trans. Faraday Soc. 1933, 29, 883.
Paek, S.-H., C. J. Durning, K.-W. Lee and A. Lien, J. Appl. Phys. 1998, 83, 1270.
Park, S., C. Padeste, H. Schift, J. Gobrecht and T. Scharf, Adv. Mater. 2005, 17, 1398.
Parker, W. P., Proc. Soc. Photo-Opt. Instrum. Eng. 1996, 2689, 195.
Pidduck, A. J., G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster and L. Boogaard, J. Vac. Sci. Technol. A 1996, 14, 1723.
Rastegar, A., M. Škarabot, B. Blij and Th. Rasing, J. Appl. Phys. 2001, 89, 960.
Schadt, M., H. Seiberle and A. Schuster, Nature 1996, 381, 212.
Schadt, M., Jpn. J. Appl. Phys. 1992, 31, 2155.
Seo, D.-S. and S. Kobayashi, Liq. Cryst. 2000, 27, 883.
Seo, D.-S., K. Araya, N. Yoshida, M. Nishikawa, Y. Yabe and S. Kobayashi, Jpn. J. Appl. Phys. 1995, 34, L503.
Seo, D.-S., K. Muroi and S. Kobayashi, Mol. Cryst. Liq. Cryst. 1992, 213, 223.
Seo, D.-S., S. Kobayashi, M. Nishikawa and Y. Yabe, Jpn. J. Appl. Phys. 1996, 35, 3531.
Seo, D.-S., S. Kobayashi, M. Nishikawa and Y. Yabe, Liq. Cryst. 1995, 19, 289.
Shannon, P. J. and W. M. Gibbons, Nature 1994, 368, 532.
Sinha, G. P., B. Wen and C. Rosenblatt, Appl. Phys. Lett. 2001, 79, 2543.
Stöhr, J., M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman and J. L. Speidell, Science 2001, 292, 2299.
Sugimura, A., Liq. Cryst. 1993, 14, 319.
Sugiyama, T., S. Kuniyasu, D. S. Seo, H. Fukuro and S. Kobayashi, Jpn. J. Appl. Phys. 1990, 29, 2045.
Sun, R., X. Huang, K. Ma and H. Jing, SID Proc. IDRC 1994, 225.
Uchida, T., M. Ohgawara and M. Wada, Jpn. J. Appl. Phys. 1980, 19, 2127.
Ulman, A., “An introduction to ultrathin organic films from Langmuir-Blodgett to Self-Assembly”, Academic Press, Inc., San Diego, 1991.
Urbach, W., M. Boix and E. Guyon, Appl. Phys. Lett. 1974, 25, 479.
van Haaren, J., Nature (London) 2001, 411, 29.
Wang, Y., C. Xu, A. Kanazawa, T. Shiono and T. Ikeda, J. Appl. Phys. 1998, 84, 181.
Wang, Y., C. Xu, A. Kanazawa, T. Shiono and T. Ikeda, J. Appl. Phys. 1998, 84, 4573.
Wasserman, S. R., Y.-T. Tao and G. M. Whitesides, Langmuir 1989, 5, 1074.
Wolf, U., W. Greubel and H. Kruger, Mol. Cryst. Liq. Cryst. 1977, 23, 187.
Wu, C.-G. and J.-Y. Chen, Chem. Mater. 1997, 9, 399.
Xia, Y. and G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 551.
Yaroshchuk, O., R. Kravchuk, A. Dobrovolskyy, L. Qiu and O. D. Lavrentovich, Liq. Cryst. 2004, 31, 859.
Zocher, H., Trans. Faraday Soc. 1933, 29, 945.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top