[1] Y. Yang, and H. S. Udaykumar, Sharp interface Cartesian grid method III: Solidification of pure materials and binary solutions, J. Comput. Phys. 210, 55 (2005).
[2] M. E. Glicksman, E. J. Schaefer and J. D. Ayers, Dendritic growth-a test of theory, Metall. Trans. A 7, 1747 (1976)
[3] 劉其俊,適應性有限體積法的開發及其在固化上的應用,碩士論文,台灣大學,民國八十九年。[4] 許晉銘,在強制對流下樹枝狀晶體成長之適應性相場模擬,碩士論文,台灣大學,民國九十年。[5] L. Tan, N. Zabaras, A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods, J. Comput. Phys. 211, 36 (2006).
[6] H.Carslaw and J. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 294.
[7] K. A. Rathjen, L. M. Jiji, Heat conduction with melting or freezing in a coner, J. Heat Transf.-Trans. ASME 93, 101 (1971).
[8] H. G. Landau, Heat conduction in a melting solid, Q. Appl. Math. 8, 81 (1950).
[9] M. E. Rose, A method for calculating solutions of parabolic equations with free boundary, Math. Comput. 14, 249 (1960).
[10] C. R. Swaminathan and V. R. Voller, On the enthalpy method, Int. J. Numer. Methods. Heat Fluid Flow 3,323 (1993).
[11] K. Libbrecht and P. Rasmussen, Snow crystal photographs—The Rasmussen and Libbrecht collection (http://www.its.caltech.edu/
~atomic/snowcrystals/photos/).
[12] M. E. Glicksman, The isothermal dendritic growth experiment (IDGE), 1981 (http://www.rpi.edu/locker/56/000756/)
[13] D. Kessler, J. Koplik, and H. Levine, Phys. Rev. A 34, 4980 (1986).
[14] D. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37(3), 255 (1988).
[15] J. S. Langer, in Chance and Matter, edited by J. Souletie, J. Vannimenus, and R. Stora (North-Holland, Amsterdam, 1987), p. 629.
[16] J. S. Langer, Science 243, 1150 (1989).
[17] P. Pelce, Dynamics of Curved Fronts (Academic Press, New York, 1988).
[18] J. P. Gollub, in Nonlinear Phenomena Related to Growth and Form, edited by M. Ben Amar, P. Pelce, and P. Tabeling (Plenum, New York, 1991).
[19] W. Kurz and R. Trivedi, Acta Metall. Mater. 38, 1 (1990).
[20] J. M. Sullivan Jr., D. R. Lynch, and K. O’Neill, Finite element simulation of planar instabilities during solidification of an undercooled melt, J. Comput. Phys. 69, 81 (1987).
[21] J. M. Sullivan Jr. and D. R. Lynch, Non-linear simulation of dendritic solidification of an undercooled melt, Int. J. Numer. Methods Eng. 25, 415 (1988)
[22] J. M. Sullivan Jr. and H. Hao, in Heat Transfer in Melting, Solidification and Crystal Grwoth, HTD, Vol. 234, edited by I. S. Habib and S. Thynell (ASME, New York, 1993), p. 14.
[23] K. H. Tacke, in Free Boundary Problems: Theory and Applications, Vol.II, edited by K. H. Hoffmann and J. Sprekels (Longman Sci. Tech., Essex, UK, 1990), p. 636.
[24] J. A. Sethian and J. Strain, Crystal growth and dendritic solidification, J. Comput. Phys. 98(2), 231 (1992).
[25] R. Almgren, Variational algorithms and pattern formation in dendritic solidification, J. Comput. Phys . 106, 337 (1993).
[26] K. Brattkus and D. I. Meiron, Numerical simulations of unsteady crystal growth, SIAM J. Appl. Math. 52(5), 1303 (1992).
[27] N. Palle and J. A. Dantzig, An adaptive mesh refinement scheme for solidification problems, Metall. Mat. Trans. A 27A, 707 (1996).
[28] D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, J. Comput. Phys. 123, 127 (1996).
[29] H. S. Udaykumar, R. Mittal, and W. Shyy, Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids, J. Comput. Phys. 153, 535 (1999).
[30] P. Zhao and J. C. Heinrich, Front-tracking finite element method for dendritic solidification, J. Comput. Phys. 173, 765 (2001).
[31] G. Caginalp, Arch. Rat. Mech. Anal. 92, 205 (1986).
[32] G. Caginalp, Anal. Phys. 172, 136 (1986).
[33] G. Caginalp and E. Socolovsky, SIAM J. Sci. Comput. 15, 106 (1991).
[34] A. Karma and W. J. Rappel, Phys. Rev. E 53, 3017 (1996).
[35] A. Karma and W. J. Rappel, Phys. Rev. E 57, 4323 (1998).
[36] M. E. Glicksman, Metall.Sci Eng. 65, 45 (1984).
[37] S. Osher and J. A. Sethian, Front propagating with curvature-
dependent speed: Algorithmsbased on Hamilton-Jacobi formulation, J. Comput. Phys. 79, 12 (1988).
[38] S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys. 135, 8 (1997).
[39] Y.-T. Kim, N. Goldenfeld, and J. Dantzig, Computation of dendritic microstructures using a level set method, Phys. Rev. E 62,2471 (2000).
[40] Y.-T. Kim, N. Provatas, N. Goldenfeld, and J. Dantzig, Universal dynamics of phase-field models for dendritic growth, Phys. Rev. E 59, R2546 (1999).
[41] Y. Saad, Iterative Methods for Sparse Linear Systems (PWS publishing company, Boston).
[42] F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang, A second order accurate symmetric discretization of the poisson equation on irregular domains, J. Comput. Phys. 176, 205 (2002).
[43] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher, A level set approach for the numerical simulation of dendritic growth, J. Sci. Comput. 19, 183 (2003).
[44] F. Gibou and R. Fedkiw, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys. 202, 577 (2005).
[45] T. Aslam, A partial di.erential equation approach to multidimensional extrapolation, J. Comput. Phys. 193, 349 (2004).
[46] N. Zabaras, B. Ganapathysubramanian and L. Tan, Modelling dendritic solidification with melt convection using the extended finite element method, J. Comput. Phys. , in press.
[47] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114, 146 (1994).
[48] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III, J. Comput. Phys. 71, 231 (1987).
[49] X.-D. Liu, S. Osher, and T. Chan, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126, 202 (1996).
[50] S. R. Mathur and J. Y. Murthy, A pressure-based method for unstructured meshes, Numerical Heat Transfer, Part B 31, 195 (1997).
[51] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-based fast local level set method, J. Comput. Phys. 155, 410 (1999).
[52] X-D Liu, R. Fedkiw and M. Kang, A boundary condition capturing method for Poisson''s equation on irregular domains, J. Comput. Phys. 160, 151 (2000).
[53] V. R. Voller, Similarity solution for the solidification of a multicomponent alloy, Int. J. Heat Mass Transfer, 40, 2869 (1997).
[54] K. A. Rathjen, PhD thesis, The City University of New York, 1968
[55] P. Zhao and J.C. Heinrich, Numerical approximation of a thermally driven interface using finite elements, Int. J. Numer. Engng 56, 1533 (2003).