跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊明軒
研究生(外文):Ming-Hsuan Chuang
論文名稱:適應性等位函數法在固化問題上之模擬
論文名稱(外文):Adaptive Level Set Method for Solidification Problems
指導教授:藍崇文藍崇文引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:88
中文關鍵詞:適應性等位函數法固化問題
外文關鍵詞:adaptive Level set methodsolidification problems
相關次數:
  • 被引用被引用:4
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
等位函數法(Level set method)是應用於處理界面最廣泛的方法,由於本身為距離界面之函數,界面永遠由平滑、連續之 (zero level set)函數表達之,可輕易獲得界面位置並且能處理極為複雜的界面,當界面彼此靠近等位函數能自動將界面融合(merging);反之則自動分離(breaking),並且也容易將程式由二維拓展為三維。
本實驗室發展適應性相場模式處理固化問題已有五年時間,且有許多豐碩的成果;在科學界近年來等位函數法也趨於成熟,能模擬樹枝狀晶體甚至合金固化問題[1],由於不同於相場模式之diffused-interface model,而是利用sharp-interface model處理界面,在粗網格就能夠得到定性之結果。本研究開創將等位函數法運用於適應性有限體積架構上模擬種種固化問題,首先介紹等位函數法於適應性有限體積法之離散,引入等位函數法後如何維持自然之二階收斂,sharp-interface model如何處理不連續之兩相問題,接著測試一些具有解析解之固化問題驗証程式之正確性及精確性,最後嘗試模擬過冷環境中樹枝狀晶體的成長。
The level set method has been widely used in numerics of propagating interfaces. Level set function is close to a signed distance function, and it can be used to exactly locate the interface in order to apply discretizations. Topological changes in the evolving front are handled naturally. The position of the front at time t is given by the zero-level set of a smooth, continuous function. This set needs not be connected and can break and merge as t advances. Furthermore, it can be easily extended to higher dimensions.

Over the last five years, the adaptive phase field model was widely adopted to study solidification problems in our group, while many fruitful results have been reported. However, because the concept of diffusive interface is adopted, the drawback for performing phase field modeling lies on its very awful computational load. Recently, the development of level set method has become mature and was used to simulate cases with complex distortion of interface, such as dendritic growth of an alloy [1]. Since the formulation of sharp-interface model is embedded locally, in principle, the level set method can simulate these problems accurately by using relatively thicker mesh structure. In this report, we have developed an adaptive level set method based on the finite volume method (FVM) to simulate solidification problems. To check its feasibility, we have derived numerical and physical algorithms carefully and discussed the convergence of our present model. Moreover, comparisons with analytical solutions were given by testing several Stefan problems. Finally, we tried to challenge the case dendritic growth under high supercooling.
致 謝……………………………………………………………..…Ⅰ
中文摘要………………………………………………………..………Ⅱ
英文摘要………………………………………………..……………..Ⅲ
目 錄………………………………………………………..………Ⅳ
符號說明………………………………………………………………..Ⅶ
表目錄…………………………………………K………………….….Ⅸ
圖目錄…………………………………………………………………..Ⅹ



第一章 緒論
1-1 研究動機………………………………………………….…1
1-2 文獻回顧……………………………………………….……3
第二章 物理模式與數值方法
2-1 物理模式………………………………………………….12
2-1.1等位函數法(Level set method)…………………12
2-1.2主導方程式…………………………………………13
2-2 AMR簡介………………………………………….……..16
2-3 數值方法……………………………………………….…..20
2-3.1有限體積法(Finite volume method)…………...20
2-3.2等位函數之離散…………………………………….26
2-3.3重新起始化方程式之離散………………………….31
2-3.4能量方程式在界面之處理………………………….34
2-3.5求解界面速度……………………………………..36
2-3.6總結模式之假設………………………………..…41
2-3.7總結計算流程………………………………………41
第三章 結果與討論
3-1測試問題………………………………………………...…42
3-1.1 穩態測試..…..………….…………………………43
3-1.2 一維凝固問題….……………………………….45
3-1.3 二維穩定固化問題(stable solidification)...52
3-2非穩定固化問題(unstable solidification)……….…64
3-2.1 界面曲率之驗証……………………………..64
3-2.2 等向性晶體成長(isotropic)測試網格效應.68
3-2.3樹枝狀晶體成長模擬…………………………74
3-3與相場模式(Phase field method)比較………...78
3-3.1一維測試….………………………………..78
3-3.2樹枝狀晶體成長….………………………..80
第四章 結論………………………………………………………..…..82
參考文獻……………………………………………………………….84
[1] Y. Yang, and H. S. Udaykumar, Sharp interface Cartesian grid method III: Solidification of pure materials and binary solutions, J. Comput. Phys. 210, 55 (2005).
[2] M. E. Glicksman, E. J. Schaefer and J. D. Ayers, Dendritic growth-a test of theory, Metall. Trans. A 7, 1747 (1976)
[3] 劉其俊,適應性有限體積法的開發及其在固化上的應用,碩士論文,台灣大學,民國八十九年。
[4] 許晉銘,在強制對流下樹枝狀晶體成長之適應性相場模擬,碩士論文,台灣大學,民國九十年。
[5] L. Tan, N. Zabaras, A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods, J. Comput. Phys. 211, 36 (2006).
[6] H.Carslaw and J. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959), p. 294.
[7] K. A. Rathjen, L. M. Jiji, Heat conduction with melting or freezing in a coner, J. Heat Transf.-Trans. ASME 93, 101 (1971).
[8] H. G. Landau, Heat conduction in a melting solid, Q. Appl. Math. 8, 81 (1950).
[9] M. E. Rose, A method for calculating solutions of parabolic equations with free boundary, Math. Comput. 14, 249 (1960).
[10] C. R. Swaminathan and V. R. Voller, On the enthalpy method, Int. J. Numer. Methods. Heat Fluid Flow 3,323 (1993).
[11] K. Libbrecht and P. Rasmussen, Snow crystal photographs—The Rasmussen and Libbrecht collection (http://www.its.caltech.edu/
~atomic/snowcrystals/photos/).
[12] M. E. Glicksman, The isothermal dendritic growth experiment (IDGE), 1981 (http://www.rpi.edu/locker/56/000756/)
[13] D. Kessler, J. Koplik, and H. Levine, Phys. Rev. A 34, 4980 (1986).
[14] D. Kessler, J. Koplik, and H. Levine, Adv. Phys. 37(3), 255 (1988).
[15] J. S. Langer, in Chance and Matter, edited by J. Souletie, J. Vannimenus, and R. Stora (North-Holland, Amsterdam, 1987), p. 629.
[16] J. S. Langer, Science 243, 1150 (1989).
[17] P. Pelce, Dynamics of Curved Fronts (Academic Press, New York, 1988).
[18] J. P. Gollub, in Nonlinear Phenomena Related to Growth and Form, edited by M. Ben Amar, P. Pelce, and P. Tabeling (Plenum, New York, 1991).
[19] W. Kurz and R. Trivedi, Acta Metall. Mater. 38, 1 (1990).
[20] J. M. Sullivan Jr., D. R. Lynch, and K. O’Neill, Finite element simulation of planar instabilities during solidification of an undercooled melt, J. Comput. Phys. 69, 81 (1987).
[21] J. M. Sullivan Jr. and D. R. Lynch, Non-linear simulation of dendritic solidification of an undercooled melt, Int. J. Numer. Methods Eng. 25, 415 (1988)
[22] J. M. Sullivan Jr. and H. Hao, in Heat Transfer in Melting, Solidification and Crystal Grwoth, HTD, Vol. 234, edited by I. S. Habib and S. Thynell (ASME, New York, 1993), p. 14.
[23] K. H. Tacke, in Free Boundary Problems: Theory and Applications, Vol.II, edited by K. H. Hoffmann and J. Sprekels (Longman Sci. Tech., Essex, UK, 1990), p. 636.
[24] J. A. Sethian and J. Strain, Crystal growth and dendritic solidification, J. Comput. Phys. 98(2), 231 (1992).
[25] R. Almgren, Variational algorithms and pattern formation in dendritic solidification, J. Comput. Phys . 106, 337 (1993).
[26] K. Brattkus and D. I. Meiron, Numerical simulations of unsteady crystal growth, SIAM J. Appl. Math. 52(5), 1303 (1992).
[27] N. Palle and J. A. Dantzig, An adaptive mesh refinement scheme for solidification problems, Metall. Mat. Trans. A 27A, 707 (1996).
[28] D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, J. Comput. Phys. 123, 127 (1996).
[29] H. S. Udaykumar, R. Mittal, and W. Shyy, Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids, J. Comput. Phys. 153, 535 (1999).
[30] P. Zhao and J. C. Heinrich, Front-tracking finite element method for dendritic solidification, J. Comput. Phys. 173, 765 (2001).
[31] G. Caginalp, Arch. Rat. Mech. Anal. 92, 205 (1986).
[32] G. Caginalp, Anal. Phys. 172, 136 (1986).
[33] G. Caginalp and E. Socolovsky, SIAM J. Sci. Comput. 15, 106 (1991).
[34] A. Karma and W. J. Rappel, Phys. Rev. E 53, 3017 (1996).
[35] A. Karma and W. J. Rappel, Phys. Rev. E 57, 4323 (1998).
[36] M. E. Glicksman, Metall.Sci Eng. 65, 45 (1984).
[37] S. Osher and J. A. Sethian, Front propagating with curvature-
dependent speed: Algorithmsbased on Hamilton-Jacobi formulation, J. Comput. Phys. 79, 12 (1988).
[38] S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys. 135, 8 (1997).
[39] Y.-T. Kim, N. Goldenfeld, and J. Dantzig, Computation of dendritic microstructures using a level set method, Phys. Rev. E 62,2471 (2000).
[40] Y.-T. Kim, N. Provatas, N. Goldenfeld, and J. Dantzig, Universal dynamics of phase-field models for dendritic growth, Phys. Rev. E 59, R2546 (1999).
[41] Y. Saad, Iterative Methods for Sparse Linear Systems (PWS publishing company, Boston).
[42] F. Gibou, R. Fedkiw, L.-T. Cheng, and M. Kang, A second order accurate symmetric discretization of the poisson equation on irregular domains, J. Comput. Phys. 176, 205 (2002).
[43] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher, A level set approach for the numerical simulation of dendritic growth, J. Sci. Comput. 19, 183 (2003).
[44] F. Gibou and R. Fedkiw, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys. 202, 577 (2005).
[45] T. Aslam, A partial di.erential equation approach to multidimensional extrapolation, J. Comput. Phys. 193, 349 (2004).
[46] N. Zabaras, B. Ganapathysubramanian and L. Tan, Modelling dendritic solidification with melt convection using the extended finite element method, J. Comput. Phys. , in press.
[47] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114, 146 (1994).
[48] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III, J. Comput. Phys. 71, 231 (1987).
[49] X.-D. Liu, S. Osher, and T. Chan, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126, 202 (1996).
[50] S. R. Mathur and J. Y. Murthy, A pressure-based method for unstructured meshes, Numerical Heat Transfer, Part B 31, 195 (1997).
[51] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-based fast local level set method, J. Comput. Phys. 155, 410 (1999).
[52] X-D Liu, R. Fedkiw and M. Kang, A boundary condition capturing method for Poisson''s equation on irregular domains, J. Comput. Phys. 160, 151 (2000).
[53] V. R. Voller, Similarity solution for the solidification of a multicomponent alloy, Int. J. Heat Mass Transfer, 40, 2869 (1997).
[54] K. A. Rathjen, PhD thesis, The City University of New York, 1968
[55] P. Zhao and J.C. Heinrich, Numerical approximation of a thermally driven interface using finite elements, Int. J. Numer. Engng 56, 1533 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top