跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 07:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃怡芬
研究生(外文):Yi-Fen Huang
論文名稱:酪氨酸去磷酸酶受到一氧化氮引發之可逆性酵素活性調控的機制探討
論文名稱(外文):Nitric oxide-mediated reversible regulation of protein tyrosine phosphatases through cysteine S-nitrosylation
指導教授:孟子青孟子青引用關係
指導教授(外文):Tzu-Ching Meng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:75
中文關鍵詞:酪氨酸去磷酸酶一氧化氮
外文關鍵詞:Nitric oxideS-nitrosylationprotein tyrosine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一氧化氮(NO)透過 cGMP 路徑的方式來調控許多重要生理功能的研究至今相當成熟。然而,越來越多的報告顯示,NO可以不經由cGMP 路徑的方式來執行功能;其中最受到矚目的是對蛋白的半胱胺酸(cysteine)上進行後轉譯修飾,即半胱胺酸亞硝基化作用(S-nitrosylation)來調控。在眾多一氧化氮可能進行反應的目標中,酪胺酸去磷酸酶 (protein tyrosine phosphatases,簡稱PTPs) 由於其進行酵素催化作用的半胱胺酸(catalytic cysteine)具有特殊的低pKa,被認為很有機會進行半胱胺酸亞硝基化作用的反應。

本研究首先在體外(in vitro)系統中以PTP1B為對象(典型PTPs的代表,調控了許多重要的訊息路徑),在分子層次上清楚說明了PTPs 亞硝基化作用發生的機制。結果顯示,利用一氧化氮給予者S-nitroso-N-acetylpenicillamine (SNAP)處理PTP1B造成了半胱胺酸可逆亞硝基化反應而抑制蛋白活性,但不會形成過度不可逆氧化而造成PTPs永久活性喪失的現象。另外,搭配質譜儀分析方法進一步驗證PTP1B Cys215的亞硝基化作用。此外,實驗證實在PTP1B 半胱胺酸亞硝基化作用的進行可以避免PTPs在H2O2的作用下所引起的蛋白過度氧化與永久失活,提供了在氧化爆起作用(oxidative burst)環境中一氧化氮對於PTPs保護功能的角色。本研究進一步針對了一氧化氮是否在細胞內廣泛地造成各種PTPs的亞硝基化作用進行深入的探討。主要是利用膠內酪胺酸去磷酸酶活性分析法(in-gel PTP activity assay)在EAhy926 內皮細胞中觀察內生性PTPs 氧化還原狀態。結果發現,不論是外源性一氧化氮(SNAP)或是在內生性一氧化氮 (VEGF)皆可以造成細胞內PTPs的亞硝基化作用,也發現麩胱甘肽(GSH)可有效還原亞硝基化作用的PTPs。結果也顯示,一氧化氮所引發的PTPs暫時性失去活性伴隨著細胞內蛋白酪胺酸磷酸化程度上升。綜合本研究的結果,不只顯示了PTPs 半胱胺酸亞硝基化作用重要的基本分子機制,並且證實了一氧化氮藉由亞硝基化作用影響PTPs活性而扮演重要細胞生理調控的角色。
It has been well recognized that nitric oxide (NO) regulates important biological processes in a cGMP-dependent manner. In addition, substantial evidence has shown that NO may participate in the regulation of signal transduction through Cys S-nitrosylation of various signaling pathway. Among potential NO targets, the protein tyrosine phosphatases (PTPs) were proposed to be susceptible to nitorsylation due to the unique low pKa character of their essential catalytic Cys residue. In the present study, we initially explored the molecular mechanism for S-nitrosylation of PTP1B, a prototypic PTP which controls a diverse array of signaling pathways. Our results demonstrated that the treatment of PTP1B with S-nitroso-N-acetylpencillamine (SNAP), an NO donor, led to solely reversible inhibition, rather than facilitating the formation of permanently inactive form of phosphatase. In addition, the S-nitrosylated Cys residues of PTP1B were directly identified by advanced mass spectrometry analysis. Interestingly, S-nitrosylation of the catalytic Cys215 prevented PTP1B from irreversible oxidation, thus providing a protective effect for the phosphatase during an oxidative burst. We further investigated the regulation of PTPs by NO in a cellular context. For this purpose, an in-gel phosphatase activity assay was employed to analyze the redox status of endogeneous PTPs expressed in EAhy926 endothelial cells. We demonstrated that multiple PTPs were reversibly nitrosylated and inactivated in these ECs treated with either SNAP (exogenous NO donor) or VEGF (endogenous NO donor). Furthermore, cellular glutathione level played an essential role for an efficient reduction of nitrosylated PTPs. The data also show that the NO-mediated inactivation of PTPs was concomitant with an increased tyrosine phosphorylation level of cellular proteins. Our results not only reveal the fundamental basis for the mechanistic detail of Cys nitrosylation of PTPs, but offer insights into a novel biological role of NO that may govern tyrosine phosphorylation-dependent signaling through regulation of cellular PTPs.
目錄
英文摘要……………………………………………………………………….1
中文摘要……………………………………………………………………….2
緒論…………………………………………………………………………….3
實驗材料……………………………………………………………………...13
實驗方法……………………………………………………………………...18
實驗結果……………………………………………………………………...25
討論……………………………………………………………………….…..38
圖表……………………………………………………………………….…..45
附圖…………………………………………………………………………...65
參考文獻……………………………………………………………………...72
1.Moncada, S. Nitric oxide release accounts for the biological acitvity of endothelum-derived relaxing factor. Nature 327, 524 (1987).
2.Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142 (1991).
3.Howlett, R. Nobel award stirs up debate on nitric oxide breakthrough. Nature 395, 625-626 (1998).
4.Murad, F. Discovery of Some of the Biological Effects of Nitric Oxide and its Role in Cell Signaling. Bioscience Reports 19, 133 - 154 (1999 ).
5.Furchgott, R. F. Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Bioscience Reports 9 235 - 251 (1999).
6.Marletta, M. Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268, 12231-12234 (1993 ).
7.Wu, K. K. Nitric Oxide: Synthesis and Action. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd: Chichester (2000).
8.Nathan, C. & Xie, Q.-w. Nitric oxide synthases: Roles, tolls, and controls. Cell 78, 915-918 (1994).
9.Schmidt, H. H. H. W. & Walter, U. NO at work. Cell 78, 919-925 (1994).
10.Marletta, M. A. Nitric oxide synthase: Aspects concerning structure and catalysis. Cell 78, 927-930 (1994).
11.Ford, P. C., Wink, D. A. & Stanbury, D. M. Autoxidation kinetics of aqueous nitric oxide. FEBS Letters 326, 1-3 (1993).
12.Davis, K. L., Martin, E., Turko, I. V. & Murad, F. Novel effects of niric oxide Annual Review of Pharmacology and Toxicology 41, 203-236 (2001).
13.Wink, D. A. & Mitchell, J. B. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology and Medicine 25, 434-456 (1998).
14.Koesling, D. et al. Negative feedback in NO/cGMP signalling. Biochem. Soc. Trans. 33, 1119-22 (2005).
15.Hofmann, F., Ammendola, A. & Schlossmann, J. Rising behind NO: cGMP-dependent protein kinases. J. Cell. Sci. 113, 1671-1676 (2000).
16.Kemp-Harper2, R. F. B. cGMP signalling: from bench to bedside. EMBO reports 2, 149–153 (2006).
17.Sausbier, M., Schubert, R. & Voigt, V. Mechanisms of NO/cGMP-Dependent Vasorelaxation. Circ Res 87, 825-830 (2000).
18.Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6, 150-66 (2005).
19.Loscalzo, J. ATVB In Focus: Nitric Oxide Redux. Arterioscler Thromb Vasc Biol 26, 696- (2006).
20.Stamler, J. S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78, 931-6 (1994).
21.Stamler, J. S., Singel, D. J. & Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science 258, 1898-1902 (1992).
22.Martinez-Ruiz, A. & Lamas, S. S-nitrosylation: a potential new paradigm in signal transduction. Cardiovascular Research 62, 43-52 (2004).
23.Gaston, B. M., Carver, J., Doctor, A. & Palmer, L. A. S-nitrosylation signaling in cell biology. Mol Interv 3, 253-63 (2003).
24.Lane, P., Hao, G. & Gross, S. S. S-Nitrosylation Is Emerging as a Specific and Fundamental Posttranslational Protein Modification: Head-to-Head Comparison with O-Phosphorylation. Sci. STKE 2001, re1- (2001).
25.Mannick, J. B. & Schonhoff, C. M. Nitrosylation: the next phosphorylation? Archives of Biochemistry and Biophysics 408, 1-6 (2002).
26.Sun, J., Xin, C., Eu, J. P., Stamler, J. S. & Meissner, G. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. PNAS 98, 11158-11162 (2001).
27.Hess, D. T., Matsumoto, A., Nudelman, R. & Stamler, J. S. S-nitrosylation: spectrum and specificity. Nat Cell Biol 3, E46-E49 (2001).
28.Stamler, J. S., Toone, E. J., Lipton, S. A. & Sucher, N. J. (S)NO Signals: Translocation, Regulation, and a Consensus Motif. Neuron 18, 691-696 (1997).
29.Liu, X., Miller, M. J., Joshi, M. S., Thomas, D. D. & Lancaster, J. R., Jr. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. PNAS 95, 2175-2179 (1998).
30.Jaffrey, S. R. & Snyder, S. H. The Biotin Switch Method for the Detection of S-Nitrosylated Proteins. Sci. STKE 2001, pl1- (2001).
31.Stamler, J. S., Lamas, S. & Fang, F. C. Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106, 675-83 (2001).
32.Tonks, N. K. & Neel, B. G. Combinatorial control of the specificity of protein tyrosine phosphatases. Current Opinion in Cell Biology 13, 182-195 (2001).
33.Andersen, J. N. et al. Structural and Evolutionary Relationships among Protein Tyrosine Phosphatase Domains. Mol. Cell. Biol. 21, 7117-7136 (2001).
34.Meng, T.-C., Buckley, D. A., Galic, S., Tiganis, T. & Tonks, N. K. Regulation of Insulin Signaling through Reversible Oxidation of the Protein-tyrosine Phosphatases TC45 and PTP1B. J. Biol. Chem. 279, 37716-37725 (2004).
35.Kwon, J. et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. PNAS 101, 16419-16424 (2004).
36.Meng, T.-C., Fukada, T. & Tonks, N. K. Reversible Oxidation and Inactivation of Protein Tyrosine Phosphatases In Vivo. Molecular Cell 9, 387-399 (2002).
37.Yu.C.X., L., S. and Whorton, A.R. Redox regulation of PTEN by S-nitrosothiols. Mol Pharmacol 68, 847-54 (2005).
38.Zachary. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem. Soc. Trans 31 (2003).
39.Olsson, A.-K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7, 359-371 (2006).
40.Barford, D., Keller, J. C., Flint, A. J. & Tonks, N. K. Purification and Crystallization of the Catalytic Domain of Human Protein Tyrosine Phosphatase 1B Expressed in Escherichia coli. Journal of Molecular Biology 239, 726-730 (1994).
41.Chen, H.-H. & Wang, D. L. Nitric Oxide Inhibits Matrix Metalloproteinase-2 Expression via the Induction of Activating Transcription Factor 3 in Endothelial Cells. Mol Pharmacol 65, 1130-1140 (2004).
42.Allen, B. W. & Piantadosi, C. A. Electrochemical activation of electrodes for amperometric detection of nitric oxide. Nitric Oxide 8, 243-252 (2003).
43.Meng, T.-C., Hsu, S.-F. & Tonks, N. K. Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo. Methods 35, 28-36 (2005).
44.Burridge, K., Nelson, A. . An in-gel assay for protein tyrosine phosphatase activity: Detection of widespread distribution in cells and tissues Analytical Biochemistry 232, 56-64 (1995).
45.Al-Sa''doni, H. & Ferro, A. S-Nitrosothiols: a class of nitric oxide-donor drugs. Clin Sci (Lond) 98, 507-20 (2000).
46.Salmeen, A. et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769-773 (2003).
47.Duranski, M. R. e. a. Cytoprotective effects of nitrice during in vivo ischemia-reperjucion of the heart and liver. J Clin Invest 115, 1232-40 (2005).
48.D A Wink, I. H., M C Krishna, W DeGraff, J Gamson, and J B Mitchell. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. PNAS 90(21), 9813-9817 (1993).
49.Nudler, I. G. a. E. NO-mediated cytoprotection: Instant adaptation to oxidative stress in bacteria. PNAS 102(39), 13855-13860 (2005).
50.Li, S. & Whorton, A. R. Identification of Stereoselective Transporters for S-Nitroso-L-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols J. Biol. Chem. 280, 20102-20110 (2005).
51.Tonks, N. K., Diltz, C. D. & Fischer, E. H. Characterization of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem. 263, 6731-6737 (1988).
52.Myers, M. P. et al. TYK2 and JAK2 Are Substrates of Protein-tyrosine Phosphatase 1B. J. Biol. Chem. 276, 47771-47774 (2001).
53.Mannick, J. B. et al. Fas-Induced Caspase Denitrosylation. Science 284, 651-654 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top