跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳易霖
研究生(外文):I-Lin Wu
論文名稱:胃幽門螺旋桿菌岩藻糖轉移酶之受質選擇性
論文名稱(外文):Substrate Specificity Study of α1,3-Fucosyltransferase from Helicobacter pylori
指導教授:林俊宏林俊宏引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:95
中文關鍵詞:胃幽門螺旋桿菌岩藻糖轉移酶受質選擇性
外文關鍵詞:Helicobacter pyloriFucosyltransferaseSubstrate specificity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Helicobacter pylori is a major gastroduodenal pathogen to cause gastric and duodenal ulcers. The infection is associated with atrophic gastritis, a precondition to gastric cancer and lymphoma. This pathogenic bacterium expresses fucose-containing Lewis antigens as a molecular mimicry to the cell surface glycoconjugates of gastric epithelial cells in order to avoid the detection of host immune system. Such mimicry also plays an important role in mucosal adhesion, immune evasion and persistent colonization.
Fucosyltransferases (FTs) are the enzymes responsible for the last steps in the biosynthesis of Lewis carbonhydrate determinants, including Lea, Leb, Lex, Ley, sLex and sLey. Expression of these antigens in H. pylori is phase variable, controlled by an on-and-off switching of specific genes involved in LPS biosynthesis. Among the enzymes involved in the biosynthesis, a1,3/4-FT catalyzes the last step of glycosylation. We have cloned the fut gene from H. pylori NCTC11639 and expressed the protein in E. coli for further studies. The enzyme was expressed at a high level but obtained in an insoluble form. Several C-terminal truncations were thus constructed to enhance the protein solubility and activity.
This thesis aims to investigate the substrate specificity of H. pylori a1,3-FT, with a special emphasis on longer oligosaccharides. The results were verified by mass spectrometry. Our finding indicates that this enzyme has broad substrate specificity with sialylation and sulfation tolerance. The essential groups are consistent of those in human a1,3/4-FTs.
Although H. pylori and human counterparts share low sequence similarity, they display several common features including the essential hydroxyl groups and substrate specificity. Therefore, H. pylori FT could be a useful model for studying the entire FT family. This information can be employed for the use in enzymatic synthesis of fucosylated glycoconjugates.
Table of contents I
Abstract IX

Chapter 1. Introduction 1
1. Helicobacter pylori 1
1.1 Persistent infection 1
1.2 Virulence factors 2
1.3 Lewis antigens 4
1.3.1 Structures of Lewis antigens 4
1.3.2 Lewis antigens in H. pylori 5
1.4 Phase variation and immune modulation 6
2. Fucosyltransferase 8
2.1 Introduction of fucosyltransferase 8
2.1.1 Fucosyltransferase in human 9
2.1.2 Fucosyltransferase in H. pylori 11
2.2 Substrate specificity study of fucosyltransferase 14
2.2.1 Substrate specificity of human FTs 14
2.2.2 Substrate specificity of H. pylori FTs 15
3. Specific aims 17
Chapter 2. Methods and Materials 21
Materials and instruments 21
Methods 22
1. DNA manipulation 22
1.1 Primer design 22
1.2 Mutant strand synthesis reaction 22
1.3 Dpn I digestion of the amplified gene product 23
2. Protein expression and purification 23
3. Protein identification 24
3.1 SDS-PAGE analysis 24
3.2 Immunoblot analysis 24
3.2 Protein molecular weight determination 24
4. Fucosyltransferase assay 24
5. Preparation of polyLacNAc derivatives 25
5.1 Preparation of neutral polyLacNAc from keratan sulfate I 26
5.2 Preparation of sulfated LacNAc from keratan sulfate I 26
5.3 Synthesis of sialyl oligosaccharides by a2,3-SiaT 26
5.3.1 Synthesis of CMP-sialic acid by NeuA 27
5.3.2 Sialylation of the oligosaccharides by the a2,3-SiaT 27
5.4 Preparation of GlcNAcb1,3Galb1,4Glc 28
6. Sample preparation for mass spectrometry 28
6.1 Separation of glycans by PGC solid phase extraction column 28
6.2 Permethylation of oligosaccharides 28
7. Mass spectrometry 29
7.1 MALDI-TOF 29
7.2 MALDI-Q-TOF 29
7.3 MALDI-TOF-TOF 30
7.4 CID-MS/MS interpretation 30
Chapter 3. Results 33
1. Plasmid constructs 33
2. Sequence alignment of H. pylori FTs 33
3. Protein expression and purification 34
4. Synthesis of sialyl oligosaccharides 35
5. Substrate specificity of C-45 FT 35
5.1 Disaccharide acceptors 36
5.2 Trisaccharide acceptors 36
5.3 Oligosaccharide acceptors 37
5.4 Chitose acceptors 38
6. Kinetic studies 38
7. Substrate specificity of C-115 FT 39
8. Structure characterization 39
8.1 11639FT is an exclusively a1,3-fucosyltransferase 39
8.2 Addition of Gal at C-4 of Lactose abolish fucosylation activity 40
8.3 Addition of sialic acid at C-6 of LacNAc diminish fucosylation activity 40
8.4 Preparation and fucosylation of GlcNAcb1,3Galb1,4Glc 41
8.5 Fucosylation of chitose acceptors 41
9. Separation of polyLacNAc from Keratan Sulfate I 42
10. Fucosylation of polyLacNAc 43
11. Fucosylation of sulfated oligosaccharides 43
Chapter 4. Discussion 71
1. C-45 FT has a1,3-fucosyltransferase exclusively 71
2. Extra sugar in non-reducing end influence a1,3-fucosyltransferase activity 72
2.1 C-2 or C-3 replacement enhance a1,3-fucosyltransferase activity 72
C-4 replacement inhibits a1,3-fucosyltransferase activity 72
2.2 Sialylated and sulfated oligosaccharides are acceptable 73
3. Essential groups for substrate recognition 73
3.1 Essential gropus on GlcNAc 73
3.1 Essential gropus on Gal 74
4. Preference of the fucosylation site in polyLacNAc 75
5. Comparison of the substrate specificity of human FT and H. pylori FT 75
6. Structure based insight of LacNAc binding site 77
Conclusion 79
Reference 80
1.Sachs, G., Weeks, D. L., Melchers, K., Scott, D. R. The gastric biology of Helicobacter pylori. Annu. Rev. Physiol. 65, 349-369 (2003).
2.Singh, K., Ghoshal, U. C. Casual role of Helicobacter pylori infection in gastric cancer: An asian enigma. World J. Gastroenterol. 12, 1346-1351 (2006).
3.Peek, R. M. J., Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2, 28-37 (2002).
4.Rasko, D. A., Keelan, M., Wilson, T. J. M., Taylor, D. E. Lewis antigen expression by Helicobacter pylori. J. Infect. Dis. 184, 315-321 (2001).
5.Britten, C. J., van den Eijnden, D. H., McDowell, W., Kelly, V. A., Witham, S. J., Edbrooke, M. R., Bird, M. I., de Vries, T., Smithers, N. Acceptor specificity of the human leukocyte a3-fucosyltransferase: role of FucT-VII in the generation of selectin ligands. Glycobiology 8, 321-327 (1998).
6.Bergman, M., Del Prete, G., van Kooyk, Y., Appelmelk, B. Helicobacter pylori phase variation, immune modulation and gastric autoimmunity. Nat. Rev. Microbiol. 4, 151-159 (2006).
7.Christen, U., von Herrath, M. G. Initiation of autoimmunity. Curr. Opin. Immunol. 16, 759-767 (2004).
8.Gobert, A. P., McGee, D. J., Akhtar, M., Mendz, G. L., Newton, J. C., Cheng, Y., Mobley, H. L. T., Wilson, K. T. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: A strategy for bacterial survival. Proc. Natl. Acad. Sci. U.S.A. 98, 13844-13849 (2001).
9. Blaser, M. J., Berg, D. E. Helicobacter pylori genetic diversity and risk of human disease. J. Clin. Invest. 107, 767-773 (2001).
10. Monack, D. M., Mueller, A., Falkow, S. Persistent bacterial infections: The interface of the pathogen and the host immune system. Nat. Rev. Microbiol. 2, 747-765 (2004).
11. Khamri, W., Moran, A. P., Worku, M. L., Karim, Q. N., Walker, M. M., Annuk, H.,Ferris, J. A., Appelmelk, B. J., Eggleton, P., Reid, K. B., Thursz, M. R. Variations in Helicobacter pylroi lipopolysaccharide to evade the innate immune component surfactant Protein D. Infect. Immun. 73, 7677-7686 (2005).
12.Israel, D. A., Salama, N., Krishna, U., Rieger, U. M., Atherton, J. C., Falkow, S., Peek, R. M. Jr. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. U.S.A. 98, 14625-14630 (2001).
13.Harakeyama, M. Oncogenic mechanosms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer 4, 688-694 (2004).
14.Ge, Z., Chan, N. E. C., Palcic, M. M., Taylor, D. E. Coning and heterologous expression of an a1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori. J. Biol. Chem. 272, 21357-21363 (1997).
15.Cover, T. L., Blanke, S. R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 3, 320-332 (2005).
16.Prinz, C., Hafsi, N., Voland, P. Helicovacter pylori virulence factors and the host immune response: implications for therapeutic vaccination. Trends Microbiol. 11, 134-138 (2003).
17.Boyle, E. C., Finlay, B. Bacterial pathogenesis: exploiting cellular adherence. Curr. Opin. Cell Biol. 15, 633-639 (2003).
18. Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F. O., Forsberg, L., Roche, N., Angstrom, J., Larsson, T., Teneberg, S., Karlsson, K. A., Altraja, S., Wadstrom, T., Kersulyte, D., Berg, D. E., Dubois, A., Petersson, C., Magnusson, K. E., Norberg, T., Lindh, F., Lundskog, B. B., Arnqvist, A., Hammarstrom, L., Boren, T. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573-578 (2002).
19.Greenwell, P. Blood group antigens: molecules seeking a function? Glycoconj. J. 14, 159-173 (1997).
20. Nakamura, S., Kurata-Miura, K., Sasaki, K., Nishi, T., Kannagi, R. Expression of sialyl 6-sulfo Lewis Z is inversely correlated with conventional sialyl Lewis X expression in human colorectal cancer. Cancer Res. 60, 1410-1416 (2000).
21.Pratt, M. R., Bertozzi, C. R. Syntheses of 6-sulfo sialyl Lewis X glycans corresponding to the L-selectin ligand " Sulfoadhesin". Org. Lett. 6, 2345-2348 (2004).
22.Lowe, J. B. Glycosylation in the control of selectin counter-receptor structure and function. Immunol. Rev. 186, 19-36 (2002).
23. Galustian, C., Lawson, A. M., Komba, S., Ishida, H., Kiso, M., Feizi, T. Sialyl-Lewisx sequence 6-O-sulfated at N-acetylglucosamine rather than ar galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochem. Biophys. Res. Commun. 240, 748-751 (1997).
24.Hynes, S. O., Teneberg, S., Roche, N., Wadstrom, T. Glycoconjugate binding of gastric and enterohepatic Helicobacter spp. Infect. Immun. 71, 2976-2980 (2003).
25.Appelmelk, B. J., van Die, I., van Vliet, S. J., Vandenbroucke-Grauls, C. M., Geijtenbeek, T. B., van Kooyk, Y. Cutting edge: Carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170, 1635-1639 (2003).
26. Galustian, C., Elviss, N., Chart, H., Owen, R., Feizi, T. Interaction of the gastrotropic bacterium Helicobacter pylori with the leukocyte-endothelium adhesion molecules, the selectins-a preliminary report. FEMS Immunol. Med. Microbiol. 36, 127-134 (2003).
27. Wang, G., Ge, Z., Rasko, D. A., Tylor, D. E. Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol. Microbiol. 36, 1187-1196 (2000).
28. Muotiala, A., Helander, I. M., Pyhala, L., Kosunen, T. U., Moran, A. P. Low biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun. 60, 1714-1716 (1992).
29. Moran, A. P., Lindner, B., Walsh, E. J. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth- form lipopolysaccharides. J. Bacteriol. 179, 6453-6463 (1997).
30. Lepper, P. M., Triantafilou, M., Schumann, C., Schneider, E. M., Triantafilou, K. Lipopolysaccharides from Helicobacter pylori can act as antagonists for Toll-like receptor 4. Cell. Microbiol. 7, 519-528 (2005).
31. Lerouge, I., Vanderleyden, J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26, 17-47 (2001).
32. Mahdavi, J., Boren, T., Vandenbroucke-Grauls, C., Appelmelk, B. J. Limited role of lipopolysaccharide Lewis antigens in adherence of Helicobacter pylroi to the human gastric epitheliun. Infect. Immun. 71, 2876-2880 (2003).
33. Wirth, H. P., Yang, M., Peek, R. M. Jr., Tham, K. T., Blaser, M. J. Helicobacter pylori Lewis expression is related to the host Lewis phenotype. Gastroenterology 113, 1091-1098 (1997).
34.Wirth, H. P., Yang, M., Peek, R. M. Jr., Hook-Nikanne, J., Fried, M., Blaser, M. J. Phenotypic diversity in Lewis expression of Helicobacter pylori isolates from the same host. J. Lab. Clin. Med 133, 488-500 (1997).
35. Taylor, D. E., Rasko, D. A., Sherburne, R., Ho, C., Jewell, L. D. Lack of correlation between Lewis antigen expression by Helicobacter pylori and gastric epithelial cells in infected patients. Gastroenterology 115, 1113-1122 (1998).
36. Appelmelk, B. J., Shiberu, B., Trinks,C., Tapse, N., Zheng, P. Y., Verboom, T., Maaskant, J., Hokke, C. H., Schiphorst, W. E., Blanchard, D., Simoons-Smit, I. M., Eijnden, D. H., Vandenbroucke-Grauls, C. M. Phase variation in Helicobacter pylori lipopolysaccharide. Infect. Immun. 66, 70-76 (1998).
37. Appelmelk, B. J., Martino, M. C., Veenhof, E., Monteiro, M. A., Maaskant, J. J, Negrini, R., Lindh, F., Perry, M., Del Giudice, G., Vandenbroucke-Grauls, C. M. Phase variation in H type I and Lewis a epitopes of Helicobacter pylori lipopolysaccharide. Infect. Immun. 68, 5928-5932 (2000).
38. Moran, A. P., Prendergast, M. M., Appelmelk, B. J. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16, 105-115 (1996).
39. Evans, D. J. J., Evans, D. G. Helicobacter pylori adhesins: Review and perspectives. Helicobacter 5, 183-195 (2000).
40. Gustafsson, A., Hultberg, A., Sjostrom, R., Kacskobics, I., Breimer, M. E., Boren, T., Hammarstrom, L., Holgersson, J. Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glybiology 16, 1-10 (2006).
41. de Vries, N., Duinsbergen, D., Kuipers, E. J., Pot, R. G. J., Wiesenekker, P., Penn, C. W., van Vliet, A. H. M., Vandenbroucke-Grauls, C. M. J. E., Kusters, J. G. Transcriptional phase variation of a Type III restriction-modification system in Helicobacter pylori. J. Bacteriol. 184, 6615-6623 (2002).
42. Appelmelk, B. J., Shiberu, B., Trinks,C., Tapse, N., Zheng, P. Y., Verboom, T., Maaskant, J., Hokke, C. H., Schiphorst, W. E., Blanchard, D., Simoons-Smit, I. M., Eijnden, D. H., Vandenbroucke-Grauls, C. M. Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in a3-fucosyltransferase genes. Infect. Immun. 67, 5361-5366 (1999).
43. Moran, A. P., Knirel, Y. A., Senchenkova, S. N., Widmalm, G., Hynes, S. O., Jansson, P. Phenotypic variation in molecular mimicry between Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. J. Biol. Chem. 277, 5784-5795 (2002).
44. Bergman, M. P., Engering, A., Smits, H. H., van Vliet, S. J., van Bodegraven, A. A., Wirth, H. P., Kapsenberg, M. L., Vandenbroucke-Grauls, C. M. J. E., van Kooyk, Y., Appelmelk, B. J. Helicobacter pylori modulates the T helper cell 1/ T helper cell 2 balance trhough phase-variable interaction between lipopolysaccharide and DC-SIGN. J. Exp. Med. 200, 979-990 (2004).
45. Murray, B. W., Wittmann, V., Burkart, M. D., Hung, S. C., Wong, C.H. Mechanism of human a-1,3-fucosyltransferase V : Glycosidic cleavage occurs prior to nucleophilic attack. Biochemistry 36, 823-831 (1997).
46. Javaud, C., Dupuy, F., Maftah, A., Julien, R., Petit, J. M. The fucosyltransferase gene family: an amazing summary of the underlying mechanisms of gene evolution. Genetica 118, 157-170 (2003).
47. Paschinger, K., Staudacher, E., Stemmer, U., Fabini, G., Wilson, I. B. Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology 15, 463-474 (2005).
48. Taniguchi, N., Honke, K., Fukuda, M. Handbook of glycosyltransferase and related genes (Springer, 2002).
49. de Vries, T., Knegtel, R. M. A., Holmes, E. H., Macher, B. A. Fucosyltransferase: structure/function studies. Glycobiology 11, 119R-128R (2001).
50. Breton, C., Oriol, R., Imberty, A. Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. Glycobiology 8, 87-94 (1998).
51. Oriol, R., Mollicone, R., Cailleau, A., Balanzino, L., Breton, C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9, 323-334 (1999).
52. Martin, S. L., Edbrooke, M. R., Hodgman, T. C., van den Eijnden, D. H., Bird, M. I. Lewis X biosynthesis in Helicobacter pylori. J. Biol. Chem. 272, 21349-21356 (1997).
53. Jost, F., de Vries, T., Knegtel, R. M. A., Macher, B. A. Mutation of amino acids in the a1,3-fucosyltransferase motif affects enzyme activity and Km for donor and acceptor substrates. Glybiology 15, 165-175 (2005).
54. Rabbani, S., Miksa, V., Wipf, B., Ernst, B. Molecular cloning and functional expression of a novel Helicobacter pylori a-1,4fucosyltransferase. Glycobiology 15, 1076-1083 (2005).
55. Rasko, D. A., Wang, G., Palcic, M. M., Taylor, D. E. Cloning and characterization of the a1,3/4 fucosyltransferase of Helicobacter pylori. J. Biol. Chem. 275, 4988-4994 (2000).
56. Wang, G., Boulton, P. G., Chan, N. W. C., Palcic, M. M., Tylor, D. E. Novel Helicobacter pylori a1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology 145, 3245-3253 (1999).
57. Rasko, D. A., Keelan, M., Wilson, T. J. M., Taylor, D. E. Synthisis of mono- and di-fucosylated type I Lewis blood group antigens by Helicobacter pylori. Eur. J. Biochem. 267, 6059-6066 (2000).
58. Dumon, C., Samain, E., Priem, B. Assessment of the two Helicobacter pylori a1,3 -fucosyltransferase ortholog genes for the large-scale synthesis of Lewis X human oligosaccharides by metabolically engineered Escherichia coli. Biotechnol. Prog. 20, 412-419 (2004).
59. Lin, S. W., Yuan, T. M., Li, J. R., Lin, C. H. Carboxyl terminus of Helicobacter pylori a1,3-fucosyltransferase determines the structure and stability. Biochemistry 45, 8108-8116 (2006).
60. Nilsson, C., Skoglund, A., Moran, A. P., Annuk, H., Engstrand, L., Normark, S. An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection. Proc. Natl. Acad. Sci. U.S.A. 103, 2863-2868 (2005).
61. Niemela, R., Natunen, J., Majuri, M. L., Maaheimo, H., Helin, J., Lowe, J. B., Renkonen, O., Renkonen, R. Complementary acceptor and site specificities of Fuc-TIV and Fuc-TVII allow effective biosynthsis of sialyl-triLex and related polylactosamines present on glycoprotein counterreceptors of selectins. J. Biol. Chem. 273, 4021-4026 (1998).
62. Sherwood, A. L., Upchurch, D. A., Stroud, M. R., Davis, W. C., Holmes, E. H. Analysis of the expression and enzymatic properties of a1->3 fucosyltransferase from human lung carcinoma NCI-H69 and PC9 cells. Glycobiology 9, 637-643 (1999).
63. de Vries, T., van den Eijnden, D. H. Biosynthesis of sialyl-oligomeric-Lewisx and VIM-2 epitopes: Site specificity of human milk fucosyltransferase. Biochemistry 33, 9937-9944 (1994).
64. de Vries, T., Srnka, C. A., Palcic, M. M., Swiedler, S. J., van den Eijnden, D. H., Macher, B. A. Acceptor specificity of different length constructs of human recombinant a1,3/4-fucosyltransferase. J. Biol. Chem. 270, 8712-8722 (1995).
65. Legault, D. J., Kelly, R. J., Natsuka, Y., Lowe, J. B. Human a(1,3/1,4)-fucosyltransferase discriminate between different oligosaccharide acceptor substrates through a discrete peptide fragment. J. Biol. Chem. 270, 20987-20996 (1995).
66. de Vries, T., Norberg, T., Lonn, H., van den Eijnden, D. H. The use of human milk fucosyltransferase in the synthesis of tumor-associated trimeric X determinents. Eur. J. Biochem. 216 (1993).
67. Pykari, M., Toivonen, S., Natunen, J., Niemela, R., Salminen, H., Aitio, O., Ekstrom, M., Parmanne, P., Valimaki, M., Alais, J., Auge, C., Loew, J. B., Renkonen, O., Renkonen, R. The acceptor and site specificity of a3-fucosyltransferase V. J. Biol. Chem. 275, 40057-40063 (2000).
68. Gravenhorst, E., Nimtz, M., Costam, J., Conradt, H. S. In vivo specificity of human a1,3/4-fucosyltransferase III-VII in the biosynthesis of Lewisx and sialyl Lewisx motifs on complex-type N-glycans. J. Biol. Chem. 273, 30985-30994 (1998).
69. Nishihara, S., Iwasaki, H., Kabeko, M., Tawada, A., Ito, M., Narimastu, H. a1,3-Fucosyltransferase 9 (FUT9; Fuc-TIX) preferentially fucosylates the distal GlcNAc residue of polylactosamine chain while the other four a1,3FUT members preferentially fucosylate the inner GlcNAc residue. FEBS Letters 462, 289-294 (1999).
70. Toivonen, S., Nishihara, S., Narimatsu, H., Renkonen, O., Renkonen, R. Fuc-TIX: a versatile a1,3-fucosyltransferase with a distinct accptor- and site-specificity profile. Glycobiology 12, 361-368 (2002).
71. de Vries, T., Palcic, M. M., Schoenmakes, P. S., van den Eijnden, D. H., Joziasse, D. H. Acceptor specificity of GDP-Fuc: Galb1->4GlcNAc-R a3-fucosyltransferase VI (FucT VI) expressed in insect cells as soluable, secreted enzyme. Glycobiology 7, 921-927 (1997).
72. Ma, B., Wang, G., Palcic, M. M., Hazes, B., Taylor, D. E. C-terminal amino acids of Helicobacter pylori a1,3/4 fucosyltransferase determine type I and type II transfer. J. Biol. Chem. 278, 21893-21900 (2003).
73. Ma, B., Lau, L. H., Palcic, M. M., Hazes, B., Taylor, D. E. A single aromatic amino acid at the carboxyl terminus of Helicobacter pylori a1,3/4 fucosyltransferase deterimines substrate specificity. J. Biol. Chem. 280, 36848-36856 (2005).
74. Ciucanu, I., and Kerek, F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131, 209-217 (1984).
75. Domon, B., Costello, C. E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397 - 409 (1988).
76. Monteiro, M. A., Appelmelk, B. J., Rasko, D. A., Moran, A. P., Hynes, S. O., MacLean, L. L., Chan, K. H., Michael, F. S., Logan, S. M., O''Rourke, J., Lee, A., Taylor, D. E., Perry, M. B. Lipopolysaccharide structures of Helicobacter pylori genomic strains 26695 and J99, mouse model H. pylori Sydney strain, H. pylori P466 carrying sialyl Lewis X, and H. pylori UA915 expressing Lewis B. Eur. J. Biochem. 267, 305-320 (2000).
77. Nguyen, A. T., Holmes, E. H., Whitaker, J. M., Ho, S., Shetterly, S., Macher, B. A. Human a1,3/4-fucosyltransferase. J. Biol. Chem. 273, 25244-25260 (1998).
78. Huang, M. C., Laskowska, A., Vestweber, D., Wild, M. K. The a(1,3)-fucosyltransferase Fuc-TIV, but not Fuc-TVII, generates sialyl Lewis X-like epitopes preferentially on glycolipids. J. Biol. Chem. 277, 47786-47795 (2002).
79. Dupuy, F., Germot, A., Julien, R., Maftah, A. Strucrure/function strudy of Lewis a3- and a3/4-fucosyltransferase: the a1,4-fucosylation requires an aromatic residue in the acceptor-binding domain. Glycobiology 14, 347-356 (2004).

80. Ma, B., Audette, G. F., Lin, S., Palcic, M. M., Hazes, B., Taylor, D. E. Purification, kinetic characterization, and mapping of the minimal catalytic domain and the key polar groups of Helicobacter pylori a-(1,3/1,4)-fucosyltransferase. J. Biol. Chem. 281, 6385-6394 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top