跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/04 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許弼強
研究生(外文):Pi-Chiang Hsu
論文名稱:ROCK抑制普遍性基因轉錄之探討
論文名稱(外文):ROCK-dependent repression of general transcription
指導教授:張智芬
指導教授(外文):Zee-Fen Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:61
中文關鍵詞:基因轉錄
外文關鍵詞:ROCKtranscription
相關次數:
  • 被引用被引用:0
  • 點閱點閱:432
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Rho-associated kinase (ROCK)調控的細胞膜皺縮在PMA誘發D2細胞凋亡過程中扮演了決定性的角色,該群細胞有細胞核結構改變、核染色質(chromatin)濃縮和RNA合成減少的現象。藉由冷光酵素活性系統(luciferase reporter system)分析第一、二和三型聚合脢所從屬的基因表現,我發現第一、二和三型聚合脢所從屬的基因表現皆會被ROCK(CAT)抑制,說明ROCK的過度活化足以抑制普遍性的基因轉錄。由於ROCK造成的細胞皺縮不會使核染色質過度包裹到無法被微球菌核酸脢(micrococcal nuclease)切割的狀態,顯示ROCK所造成轉錄的抑制不是導因於核染色質更高度秩序(higher-order)的濃縮。藉由分析組蛋白的修飾得知在HEK 293T細胞中ROCK(CAT)的表現會造成組蛋白H3的K9三甲基化增加及S10磷酸化減少,而不影響組蛋白H2B的S14磷酸化。我同時利用核染色質免疫沈澱法(ChIP)證實在表現ROCK(CAT)的HEK 293T以及處理PMA的D2細胞中,位於rRNA啟動子區域的組蛋白H3有K9三甲基化增加的現象。已知在核染色質重組所造成的轉錄抑制機轉中,組蛋白H3的K9甲基化扮演一關鍵性的角色,因此我認為透過活化ROCK所造成的細胞皺縮可能傳遞一個促進組蛋白H3 K9甲基化的訊息。有趣的是,利用siRNA降低組蛋白甲基轉移脢G9a的表現可以減緩ROCK(CAT)所造成的轉錄抑制以及組蛋白H3 K9三甲基化增加。因此我推論細胞質中ROCK所引發的皺縮訊息可傳遞到細胞核,透過G9a的作用促進核染色質重組導致基因轉錄的抑制。
In phorbol ester-induced pro-apoptotic D2 cells, the Rho-associated kinase (ROCK) plays a determining role in membrane contraction, which concomitantly results in nuclear shape change, chromatin condensation and transcription repression. Using various luciferase reporter systems, I found that pol I, II and III-dependent transcriptions are all suppressed by ectopic expression of dominant active form of ROCK(CAT), indicating that too much ROCK activation is sufficient to shut-off general transcription. Here, I showed that ROCK-mediated contraction does not make chromatin too packed to be accessed by micrococcal nuclease digestion, indicating that ROCK-mediated transcription repression is not a result of a higher-order chromatin condensation. By analyzing histone modifications, I found that expression of ROCK(CAT) in HEK 293T cells increased K9 tri-methylation of histone H3 with decreased extent of S10 phosphorylation of histone H3, while S14 phosphorylation of histone H2B remained unaffected. Consistently, results from ChIP assays showed that K9-methylation of H3 in the rRNA promoter region was increased in both HEK 293T expressing ROCK(CAT) and PMA-induced pro-apoptotic D2 cells. Since it is well known that K9 methylation of H3 plays a crucial role in chromatin remodeling for transcriptional repression, it is very likely that ROCK-mediated contraction is capable of conferring signals for K9 methylation of H3 in nuclei. Of interest, depleted expression of G9a, a histone methyltransferase, restored transcription capacity in cells expressing ROCK(CAT) with a concurrent reduction in extent of K9 methylation of histone H3. Accordingly, I hypothesized that ROCK-mediated contraction in cytoplasm transmits signal to nucleus, where function of G9a is upregulated to remodel chromatin for transcriptional repression.
中文摘要………………………………………………………2
Abstract………………………………………………………...3
Introduction…………………………………………………….4
Materials and Methods………………………………………..14
Results…………………………………………………………25
Discussion……………………………………………………..33
Figures and Legends…………………………………………..37
References……………………………………………………..55
1Takai, Y., Sasaki, T. and Matozaki, T. (2001) Small GTP-binding proteins. Physiol Rev 81, 153-208
2Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in cell biology. Nature 420, 629-635
3Mackay, D. J. and Hall, A. (1998) Rho GTPases. J Biol Chem 273, 20685-20688
4Van Aelst, L. and D''Souza-Schorey, C. (1997) Rho GTPases and signaling networks. Genes Dev 11, 2295-2322
5Aspenstrom, P. (1999) Effectors for the Rho GTPases. Curr Opin Cell Biol 11, 95-102
6Su, L. F., Knoblauch, R. and Garabedian, M. J. (2001) Rho GTPases as modulators of the estrogen receptor transcriptional response. J Biol Chem 276, 3231-3237
7Charron, F., Tsimiklis, G., Arcand, M., Robitaille, L., Liang, Q., Molkentin, J. D., Meloche, S. and Nemer, M. (2001) Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes Dev 15, 2702-2719
8Muller, J. M., Metzger, E., Greschik, H., Bosserhoff, A. K., Mercep, L., Buettner, R. and Schule, R. (2002) The transcriptional coactivator FHL2 transmits Rho signals from the cell membrane into the nucleus. Embo J 21, 736-748
9Chihara, K., Amano, M., Nakamura, N., Yano, T., Shibata, M., Tokui, T., Ichikawa, H., Ikebe, R., Ikebe, M. and Kaibuchi, K. (1997) Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem 272, 25121-25127
10Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., Miki, T. and Gutkind, J. S. (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137-1146
11Alberts, A. S., Geneste, O. and Treisman, R. (1998) Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces H4 hyperacetylation. Cell 92, 475-487
12Marinissen, M. J., Chiariello, M. and Gutkind, J. S. (2001) Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev 15, 535-553
13Miralles, F., Posern, G., Zaromytidou, A. I. and Treisman, R. (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329-342
14Leung, T., Manser, E., Tan, L. and Lim, L. (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270, 29051-29054
15Nakagawa, O., Fujisawa, K., Ishizaki, T., Saito, Y., Nakao, K. and Narumiya, S. (1996) ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392, 189-193
16Riento, K. and Ridley, A. J. (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4, 446-456
17Mueller, B. K., Mack, H. and Teusch, N. (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4, 387-398
18Leung, T., Chen, X. Q., Manser, E. and Lim, L. (1996) The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16, 5313-5327
19Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A. and Kaibuchi, K. (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. Embo J 15, 2208-2216
20Kureishi, Y., Kobayashi, S., Amano, M., Kimura, K., Kanaide, H., Nakano, T., Kaibuchi, K. and Ito, M. (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272, 12257-12260
21Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A. and Olson, M. F. (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3, 339-345
22Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J. and Breard, J. (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3, 346-352
23Feng, J., Ito, M., Kureishi, Y., Ichikawa, K., Amano, M., Isaka, N., Okawa, K., Iwamatsu, A., Kaibuchi, K., Hartshorne, D. J. and Nakano, T. (1999) Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem 274, 3744-3752
24Coleman, M. L. and Olson, M. F. (2002) Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9, 493-504
25Hall, A. (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509-514
26Lai, J. M., Lu, C. Y., Yang-Yen, H. F. and Chang, Z. F. (2001) Lysophosphatidic acid promotes phorbol-ester-induced apoptosis in TF-1 cells by interfering with adhesion. Biochem J 359, 227-233
27Ausio, J. and Van Holde, K. E. (1988) The histones of the sperm of Spisula solidissima include a novel, cysteine-containing H-1 histone. Cell Differ 23, 175-189
28Wolffe, A. P. (1995) Centromeric chromatin. Histone deviants. Curr Biol 5, 452-454
29Mymryk, J. S., Fryer, C. J., Jung, L. A. and Archer, T. K. (1997) Analysis of chromatin structure in vivo. Methods 12, 105-114
30Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260
31Bottomley, M. J. (2004) Structures of protein domains that create or recognize histone modifications. EMBO Rep 5, 464-469
32Wong, J., Patterton, D., Imhof, A., Guschin, D., Shi, Y. B. and Wolffe, A. P. (1998) Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. Embo J 17, 520-534
33Wolffe, A. P. (1999) Architectural regulations and Hmg1. Nat Genet 22, 215-217
34Grunstein, M. (1997) Histone acetylation in chromatin structure and transcription. Nature 389, 349-352
35Sterner, D. E. and Berger, S. L. (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435-459
36Zhang, Y. and Reinberg, D. (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15, 2343-2360
37Nowak, S. J. and Corces, V. G. (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20, 214-220
38Davie, J. R. and Murphy, L. C. (1990) Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry 29, 4752-4757
39Nathan, D., Sterner, D. E. and Berger, S. L. (2003) Histone modifications: Now summoning sumoylation. Proc Natl Acad Sci U S A 100, 13118-13120
40Adamietz, P. and Rudolph, A. (1984) ADP-ribosylation of nuclear proteins in vivo. Identification of histone H2B as a major acceptor for mono- and poly(ADP-ribose) in dimethyl sulfate-treated hepatoma AH 7974 cells. J Biol Chem 259, 6841-6846
41Cheung, W. L., Ajiro, K., Samejima, K., Kloc, M., Cheung, P., Mizzen, C. A., Beeser, A., Etkin, L. D., Chernoff, J., Earnshaw, W. C. and Allis, C. D. (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507-517
42Fischle, W., Wang, Y. and Allis, C. D. (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15, 172-183
43Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074-1080
44Berger, S. L. (2002) Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12, 142-148
45Lachner, M., O''Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120
46Margueron, R., Trojer, P. and Reinberg, D. (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15, 163-176
47Nightingale, K. P., O''Neill, L. P. and Turner, B. M. (2006) Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16, 125-136
48Milner, C. M. and Campbell, R. D. (1993) The G9a gene in the human major histocompatibility complex encodes a novel protein containing ankyrin-like repeats. Biochem J 290 ( Pt 3), 811-818
49Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. and Rauscher, F. J., 3rd (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16, 919-932
50Roguev, A., Schaft, D., Shevchenko, A., Pijnappel, W. W., Wilm, M., Aasland, R. and Stewart, A. F. (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. Embo J 20, 7137-7148
51Tachibana, M., Sugimoto, K., Fukushima, T. and Shinkai, Y. (2001) Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276, 25309-25317
52Cheung, P., Tanner, K. G., Cheung, W. L., Sassone-Corsi, P., Denu, J. M. and Allis, C. D. (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5, 905-915
53Adam, S. A., Marr, R. S. and Gerace, L. (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111, 807-816
54Martic, G., Karetsou, Z., Kefala, K., Politou, A. S., Clapier, C. R., Straub, T. and Papamarcaki, T. (2005) Parathymosin affects the binding of linker histone H1 to nucleosomes and remodels chromatin structure. J Biol Chem 280, 16143-16150
55Ayrault, O., Andrique, L., Larsen, C. J. and Seite, P. (2004) Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes. Oncogene 23, 8097-8104
56Lai, J. M., Hsieh, C. L. and Chang, Z. F. (2003) Caspase activation during phorbol ester-induced apoptosis requires ROCK-dependent myosin-mediated contraction. J Cell Sci 116, 3491-3501
57Zhen, Y. Y., Libotte, T., Munck, M., Noegel, A. A. and Korenbaum, E. (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115, 3207-3222
58Kim, Y. B., Yu, J., Lee, S. Y., Lee, M. S., Ko, S. G., Ye, S. K., Jong, H. S., Kim, T. Y., Bang, Y. J. and Lee, J. W. (2005) Cell adhesion status-dependent histone acetylation is regulated through intracellular contractility-related signaling activities. J Biol Chem 280, 28357-28364
59Hill, C. S., Wynne, J. and Treisman, R. (1994) Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. Embo J 13, 5421-5432
60Price, M. A., Hill, C. and Treisman, R. (1996) Integration of growth factor signals at the c-fos serum response element. Philos Trans R Soc Lond B Biol Sci 351, 551-559
61Zohar, M., Teramoto, H., Katz, B. Z., Yamada, K. M. and Gutkind, J. S. (1998) Effector domain mutants of Rho dissociate cytoskeletal changes from nuclear signaling and cellular transformation. Oncogene 17, 991-998
62Hill, C. S., Wynne, J. and Treisman, R. (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159-1170
63Wei, L., Zhou, W., Croissant, J. D., Johansen, F. E., Prywes, R., Balasubramanyam, A. and Schwartz, R. J. (1998) RhoA signaling via serum response factor plays an obligatory role in myogenic differentiation. J Biol Chem 273, 30287-30294
64Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P. and Owens, G. K. (2001) Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem 276, 341-347
65Liu, H. W., Halayko, A. J., Fernandes, D. J., Harmon, G. S., McCauley, J. A., Kocieniewski, P., McConville, J., Fu, Y., Forsythe, S. M., Kogut, P., Bellam, S., Dowell, M., Churchill, J., Lesso, H., Kassiri, K., Mitchell, R. W., Hershenson, M. B., Camoretti-Mercado, B. and Solway, J. (2003) The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. Am J Respir Cell Mol Biol 29, 39-47
66Tanaka, T., Nishimura, D., Wu, R. C., Amano, M., Iso, T., Kedes, L., Nishida, H., Kaibuchi, K. and Hamamori, Y. (2006) Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J Biol Chem 281, 15320-15329
67Bettinger, B. T., Gilbert, D. M. and Amberg, D. C. (2004) Actin up in the nucleus. Nat Rev Mol Cell Biol 5, 410-415
68Pederson, T. and Aebi, U. (2005) Nuclear actin extends, with no contraction in sight. Mol Biol Cell 16, 5055-5060
69Fomproix, N. and Percipalle, P. (2004) An actin-myosin complex on actively transcribing genes. Exp Cell Res 294, 140-148
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文