跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佩姿
研究生(外文):Pei-Tzu Wu
論文名稱:草菇毒蛋白VVA作用之探討:草菇蛋白VVA1對草菇毒蛋白VVA2的調節機制
論文名稱(外文):Studies on the Molecular Mechanism of VVA:Nontoxic Volvatoxin A1 Regulated on Pore-Forming Cardiotoxin Volvatoxin A2
指導教授:林榮耀林榮耀引用關係
指導教授(外文):Jung-Yaw Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:86
中文關鍵詞:草菇毒蛋白 A1草菇毒蛋白 A2兩親性螺旋
外文關鍵詞:volvatoxin A1volvatoxin A2amphipathic alpha-helix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
草菇毒蛋白 A(Volvatoxin A, VVA)。已知VVA是由一種孔洞形成的心臟毒素草菇毒蛋白 A2(VVA2)及草菇毒蛋白 A1(VVA1)所組成。先前的研究發現VVA2具有溶血作用及細胞毒性,但是對VVA1的活性仍不清楚。
由胜肽圖譜分析,我們運用RACE方法選殖到全長為1179個核苷酸,並得知VVA1是一個具有393個胺基酸的蛋白不含半胱胺酸及訊號胜肽。有趣的是經由BLAST比對,我們發現VVA1的胺基酸序列與VVA2 tandem repeat 相似性很高。二級結構分析得知VVA1有兩對amphipathic alpha-helices,但是缺乏與肝磷脂結合(HBS)之結構。由溶血及細胞毒性的實驗,得知VVA1本身無溶血或是造成細胞死亡的能力,然而在VVA2比VVA1之分子數比為2或比值更小,VVA1能完全抑制VVA2的溶血及細胞毒性。此結果說明VVA1與VVA2可能具有交互作用的能力,但是VVA1無法與細胞膜作用。利用酵素免疫結合吸附法(ELISA) 和超高速離心,我們發現VVA1與liposomes作用很弱,但是,在VVA2比VVA1之分子數比為2時VVA1抑制VVA2與liposomes作用,同時抑制VVA2聚合體的產生。利用免疫螢光染色及共軛焦顯微鏡觀察,證實VVA1不結合在細胞膜上,在分子數比為2時,抑制VVA2對細胞膜的結合。以pull-down 的實驗,在可模擬磷脂質兩親性(amphipathic)的Triton-X-100緩衝液存在下,發現VVA1可與VVA2直接作用。進一步透過co-pull-down的實驗及利用胜肽片段競爭的實驗,顯示一個分子VVA1所攜帶的兩對amphipathic alpha-helices可能與兩個分子VVA2的amphipathic alpha-helix直接作用形成聚合物。
另一方面,在本研究也發現VVA1在分子數比大於2時已無法抑制VVA2的溶血及細胞毒性的能力,但在VVA2/VVA1比值為 8時毒性達到最強。此分子數比所影響的毒性進一步以動物實驗來佐證,VVA1和VVA2單獨時都不具明顯的毒性,若以不同分子數比混合VVA2與VVA1則發現毒性漸強,在VVA2比VVA1 為8的毒性提升至最強,死亡的老鼠經抽血檢測發現有溶血現象伴隨產生。探討為何VVA2於老鼠體內失去毒性功能,我們由血漿中分離及純化能降低VVA2活性的成分。血漿經通過分子篩、ProteomeLab PF 2D系統及質譜的分析得知,apoB100促使VVA2形成不可逆的大分子聚合體,因此降低了VVA2的毒性。
綜上所述,本研究中證實VVA1與VVA2利用彼此的amphipathic alpha-helix直接交互作用,透過不同分子數比VVA1在體內或是體外都可直接調節VVA2的活性,這樣的調節模式對於治療癌症可提供一個新的研究方向。
Volvatoxin A (VVA) is a cardiotoxic protein isolated from edible mushroom Volvariella volvacea. It was demonstrated that VVA consists of a pore-forming cardiotoxic protein volvatoxin A2 (VVA2) and volvatoxin A1 (VVA1). Previous studies suggest that only VVA2 is endowed with hemolytic and cytotoxic activity but the function of VVA1 is unclear.
The primary structure of VVA1, elucidated by peptide mapping and cDNA nucleotide sequencing was found to consist of 393 amino acid residues without cysteine residue and signal peptide. Interestingly, the amino acids sequence of VVA1 closely resembles a tandem-repeat of VVA2. VVA1 contains two pairs of amphipathic alpha-helices but it lacks a heparin binding site (HBS). VVA1 itself has no hemolytic and cytotoxic activities, however, it inhibits the toxicity of VVA2 at the molar ratio of 2 or less. This suggests that VVA1 may interact with VVA2 but not with the cell membrane. By ELISA assay and ultracentrifugation analysis, VVA1 did not interact with phospholipids as VVA2 did. In contrast, at the molar ratio of 2, VVA1 inhibited the VVA2 binding on the phospholipids and abolished the VVA2 oligomerization which is essential for pore formation. Furthermore, the study with confocal microscopy, demonstrated that VVA1 could not bind to the cell membrane, however, it inhibited VVA2 binding to the cell membrane at the molar ratio of 2. By pull-down experiment, VVA1 directly interacted with VVA2 in the amphipathic environment established by Triton-X-100, which was similar to the environment of cell membranes. By co-pull-down experiment and peptide competition assay we found that VVA1 and VVA2 could form complex by the two pairs of amphipathic alpha-helices. The results suggest that this occurs via the interaction of one molecule of VVA1 with two molecules of VVA2.
In the present study, we demonstrated that VVA1 could not inhibit hemolytic and cytotoxic activity of VVA2 at the VVA2/VVA1 molar ratios higher than 2, while the maximum toxicity was at the molar ratio of 8. The toxicity assay by experimental animals showed that the toxicity of either VVA1 or VVA2 only was low, however, the toxicity was enhanced at molar ratios higher than 4. The degree of hemolysis in the mice that were i.p. injected with a mixture of VVA2 and VVA1 was correlated with that of the lethality. In order to study why VVA2 lost toxicity in vivo, the putative inhibitor was purified from the human plasma by gel filtration chromatography, and ProteomeLab PF 2D system, and identified with a mass spectrum. The lipoprotein, apoB100, was found to interact with VVA2 and induced VVA2 oligomerization, therefore, inhibited the toxicity of VVA2.
Taken together, this study revealed a novel mechanism by which VVA1 and lipoporotein apoB100 regulates the cytotoxicity of VVA2 by direct interaction of amphipathic alpha-helix, which provides us the new mechanism of the potential clinical research of pore-forming toxin for cancer therapy.
ABBREVIATIONS 5
ABSTRACT 6
摘要 8
OVERVIEW and RATIONALE 10
INTRODUCTION 11
MATERIALS and METHODS 14
Materials 14
Purification of VVA1, and its primary structure 14
cDNA cloning of VVA1 and construction of expression vectors 15
Site-directed mutagenesis 17
Hemolysis Assay 18
Cytotoxicity assay 18
Animal toxicity assay 18
Preparation of liposomes 19
Oligomerization regulation of VVA1 to VVA2 by SDS-PAGE Analysis 19
Enzyme-linked immunosorbent assay (ELISA assay) 20
Binding Analysis by Surface Plasmon Resonance (SPR) 21
Preparation of reVVA1 and its mutants 21
Pull-down assay 22
Co-pull-down assay 23
Peptide competition assay 23
Confocal microscopy 24
DNA ladder analysis 25
TUNEL assay 25
Analysis of VVA2 binding protein(s) in human plasma 26

RESULTS 28
cDNA cloning and characteristics of VVA1 28
Effects of VVA1 on the hemolytic and cytotoxic activity of VVA2 29
Effects of VVA1 on VVA2 in the presence of liposomes and cell membrane 30
Interactions between VVA1 and VVA2 32
Number of VVA1 binding sites for VVA2 34
Interaction of VVA1 and VVA2 by amphipathic a-helix 35
VVA2 induced cell membrane damage and apoptosis 36
Protein internalization via the pore induced by VVA2 36
Animal toxicity 37
Inhibition of VVA2 toxicity by apoB100 protein 38

DISCUSSION 40
Two component toxins, VVA1 and VVA2 40
VVA1 is a novel regulator of VVA2 41
Clinical application of VVA in cancer therapy 42
A model for VVA1 regulate the activity of VVA2 43

FIGURES and LEGENDS 45
Fig. 1. The fruit bodies of Volvariella volvacea 45
Fig. 2. Amino Acid Sequence of VVA1 46
Fig. 3. cDNA cloning of VVA1 47
Fig. 4. Alignment of the deduced amino acid sequence of VVA1-NTD and VVA1-CTD with that of VVA2 50
Fig. 5. Hydrophobic moment of amphipathic a-helix-C and -D of VVA1-NTD, and a-helix-D’ and -E’ of VVA1-CTD 52
Fig. 6. Regulation of VVA2 activity by VVA1 53
Fig. 7. Interactions of phospholipids with VVA1 and VVA2 54
Fig. 8. Interaction of VVA1 and VVA2 analyzed by SPR Assay 55
Fig. 9. Inhibition of VVA2 binding on cell membrane by VVA1 56
Fig. 10. Effects of Triton-X-100, SDS or sodium deoxycholate and liposomes on the oligomerization of VVA2 57
Fig. 11. Pull-down experiments 58
Fig. 12. Co-pull-down experiments 59
Fig. 13. Peptide competition assay 60
Fig. 14. VVA2 induced HeLa cell apoptosis identified by DNA gel electrophoresis and TUNEL assay 61
Fig. 15. Co-localization of VVA1 and VVA2 63
Fig. 16. Hemolysis of the mice 64
Fig. 17. Human plasma protein inhibits the hemolytic activity of VVA2 65
Fig. 18. Separation human plasma by the Sephadex G100 column chromatography 66
Fig. 19. 1st dimension of ProteomLab PF 2D system fractionation of the first peak obtained by Sephadex G100 coulmn chromatography. 68
Fig. 20. Purification the inhibitor(s) of VVA2 in human plasma 69
Fig. 21. ApoB100 inhibited the activity of VVA2 by inducing the oligomerization of VVA2 70
Fig. 22. Schematic representation of a structural model of VVA1 71
Fig. 23. Model of VVA1 controls VVA2 activity 72

TABLES 73
Table I 73
Table II 74

REFERENCES 75

APPENDEX I (LC-MS) 80
APPENDEX II (CV) 83
APPENDEX III (publication) 86
1. Kaneko, J. & Kamio, Y. (2004) Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem 68, 981-1003.
2. Miles, G., Jayasinghe, L. & Bayley, H. (2006) Assembly of the Bi-component leukocidin pore examined by truncation mutagenesis. J Biol Chem 281, 2205-2214.
3. Sakurai, N., Kaneko, J., Kamio, Y. & Tomita, T. (2004) Cloning, expression, and pore-forming properties of mature and precursor forms of pleurotolysin, a sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus. Biochim Biophys Acta 1679, 65-73.
4. Tomita, T., Noguchi, K., Mimuro, H., Ukaji, F., Ito, K., Sugawara-Tomita, N. & Hashimoto, Y. (2004) Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex. J Biol Chem 279, 26975-26982.
5. Abrami, L., Lindsay, M., Parton, R. G., Leppla, S. H. & van der Goot, F. G. (2004) Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J Cell Biol 166, 645-651.
6. Rainey, G. J., Wigelsworth, D. J., Ryan, P. L., Scobie, H. M., Collier, R. J. & Young, J. A. (2005) Receptor-specific requirements for anthrax toxin delivery into cells. Proc Natl Acad Sci U S A 102, 13278-13283.
7. Lin, J. Y., Jeng, T. W., Chen, C. C., Shi, G. Y. & Tung, T. C. (1973) Isolation of a new cardiotoxic protein from the edible mushroom, Volvariella volvacea. Nature 246, 524-5.
8. Fassold, E., Slade, A. M., Lin, J. Y. & Nayler, W. G. (1976) An effect of the cardiotoxic protein volvatoxin A on the function and structure of heart muscle cells. J Mol Cell Cardiol 8, 501-519.
9. Lin, J. Y. & Shi, G. Y. (1976) Toxicity of Volvatoxin A isolated from edible mushroom, volvariella volvacea. J Taiwan Pharm ass 28, 96-103.
10. Promdonkoy, B. & Ellar, D. J. (2005) Structure-function relationships of a membrane pore forming toxin revealed by reversion mutagenesis. Mol Membr Biol 22, 327-337.
11. Weng, Y. P., Lin, Y. P., Hsu, C. I. & Lin, J. Y. (2004) Functional domains of a pore-forming cardiotoxic protein, volvatoxin A2. J Biol Chem 279, 6805-6814.
12. Lin, S. C., Lo, Y. C., Lin, J. Y. & Liaw, Y. C. (2004) Crystal structures and electron micrographs of fungal volvatoxin A2. J Mol Biol 343, 477-491.
13. Walker, B., Krishnasastry, M., Zorn, L. & Bayley, H. (1992) Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. J Biol Chem 267, 21782-21786.
14. Hotze, E. M., Heuck, A. P., Czajkowsky, D. M., Shao, Z., Johnson, A. E. & Tweten, R. K. (2002) Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin. J Biol Chem 277, 11597-11605.
15. Czajkowsky, D. M., Hotze, E. M., Shao, Z. & Tweten, R. K. (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23, 3206-3215.
16. Bayley, H., Jayasinghe, L. & Wallace, M. (2005) Prepore for a breakthrough. Nat Struct Mol Biol 12, 385-386.
17. Valeva, A., Palmer, M. & Bhakdi, S. (1997) Staphylococcal alpha-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. Biochemistry 36, 13298-13304.
18. Song, L., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H. & Gouaux, J. E. (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859-1866.
19. Choe, S., Bennett, M. J., Fujii, G., Curmi, P. M., Kantardjieff, K. A., Collier, R. J. & Eisenberg, D. (1992) The crystal structure of diphtheria toxin. Nature 357, 216-222.
20. Malovrh, P., Viero, G., Serra, M. D., Podlesek, Z., Lakey, J. H., Macek, P., Menestrina, G. & Anderluh, G. (2003) A novel mechanism of pore formation: membrane penetration by the N-terminal amphipathic region of equinatoxin. J Biol Chem 278, 22678-22685.
21. Milne, J. C., Furlong, D., Hanna, P. C., Wall, J. S. & Collier, R. J. (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269, 20607-20612.
22. Benson, E. L., Huynh, P. D., Finkelstein, A. & Collier, R. J. (1998) Identification of residues lining the anthrax protective antigen channel. Biochemistry 37, 3941-3948.
23. Barth, H., Aktories, K., Popoff, M. R. & Stiles, B. G. (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68, 373-402.
24. Montecucco, C. (2001) Detoxification of a bacterial toxin by the toxin itself. Trends Pharmacol Sci 22, 493-494.
25. Liu, C. L., Tsai, C. C., Lin, S. C., Wang, L. I., Hsu, C. I., Hwang, M. J. & Lin, J. Y. (2000) Primary structure and function analysis of the Abrus precatorius agglutinin A chain by site-directed mutagenesis. Pro(199) Of amphiphilic alpha-helix H impairs protein synthesis inhibitory activity. J Biol Chem 275, 1897-1901.
26. Shih, S. F., Wu, Y. H., Hung, C. H., Yang, H. Y. & Lin, J. Y. (2001) Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J Biol Chem 276, 21870-21877.
27. Wu, Y. H., Shih, S. F. & Lin, J. Y. (2004) Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J Biol Chem 279, 19264-19275.
28. Shepard, L. A., Shatursky, O., Johnson, A. E. & Tweten, R. K. (2000) The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39, 10284-10293.
29. Syrovy, I. & Hodny, Z. (1991) Staining and quantification of proteins separated by polyacrylamide gel electrophoresis. J Chromatogr 569, 175-196.
30. Moriyama, K. & Yahara, I. (2002) Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci 115, 1591-1601.
31. Nooren, I. M. & Thornton, J. M. (2003) Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 325, 991-1018.
32. Yamaji, A., Sekizawa, Y., Emoto, K., Sakuraba, H., Inoue, K., Kobayashi, H. & Umeda, M. (1998) Lysenin, a novel sphingomyelin-specific binding protein. J Biol Chem 273, 5300-5306.
33. Umeda, M., Igarashi, K., Nam, K. S. & Inoue, K. (1989) Effective production of monoclonal antibodies against phosphatidylserine: stereo-specific recognition of phosphatidylserine by monoclonal antibody. J Immunol 143, 2273-2279.
34. Wilchek, M., Miron, T. & Kohn, J. (1984) Affinity chromatography. Methods Enzymol 104, 3-55.
35. Facchinetti, A., Tessarollo, L., Mazzocchi, M., Kingston, R., Collavo, D. & Biasi, G. (1991) An improved method for the detection of DNA fragmentation. J Immunol Methods 136, 125-131.
36. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119, 493-501.
37. Piqueras, B., Autran, B., Debre, P. & Gorochov, G. (1996) Detection of apoptosis at the single-cell level by direct incorporation of fluorescein-dUTP in DNA strand breaks. BioTechniques 20, 634-640.
38. Wu, P. T., Lin, S. C., Hsu, C. I. & Lin, J. Y. (2004). Studies on structure and function of VVA1 isolated from Volvariella volvacea by site-directed mutagenesis. Paper presented at the Twelfth Symposium on Recent Advances in Cellular and Molecular Biology, February 2-4,2004, Taipei, Taiwan.
39. Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299, 371-374.
40. Patel, H. V., Vyas, A. A., Vyas, K. A., Liu, Y. S., Chiang, C. M., Chi, L. M. & Wu, W. (1997) Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J Biol Chem 272, 1484-1492.
41. Vyas, A. A., Pan, J. J., Patel, H. V., Vyas, K. A., Chiang, C. M., Sheu, Y. C., Hwang, J. K. & Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J Biol Chem 272, 9661-9670.
42. Gatineau, E., Takechi, M., Bouet, F., Mansuelle, P., Rochat, H., Harvey, A. L., Montenay-Garestier, T. & Menez, A. (1990) Delineation of the functional site of a snake venom cardiotoxin: preparation, structure, and function of monoacetylated derivatives. Biochemistry 29, 6480-6489.
43. Venema, R. C., Sayegh, H. S., Arnal, J. F. & Harrison, D. G. (1995) Role of the enzyme calmodulin-binding domain in membrane association and phospholipid inhibition of endothelial nitric oxide synthase. J Biol Chem 270, 14705-14711.
44. Hsu, Y. T. & Youle, R. J. (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272, 13829-13834.
45. Bhakdi, S., Fussle, R. & Tranum-Jensen, J. (1981) Staphylococcal alpha-toxin: oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles. Proc Natl Acad Sci U S A 78, 5475-5479.
46. Ole J, B., James H, G., Thorkild, C. B.-H. & Jesper, B. H. (1982) Electroimmunochemical analysis of amphiphilic proteins and glycolipids stained with Sudan Black-containing detergent micelles. Electrophoresis 3, 89-98.
47. Tone, B. & Ole J, B. (1986) Electrophoretic migration velocity of amphiphilic proteins increases with decreasing Triton X-100 concentration: A new characteristic for their identification. Electrophoresis 7, 197-203.
48. Provoda, C. J. & Lee, K. D. (2000) Bacterial pore-forming hemolysins and their use in the cytosolic delivery of macromolecules. Adv Drug Deliv Rev 41, 209-221.
49. Panchal, R. G. (1998) Novel therapeutic strategies to selectively kill cancer cells. Biochem Pharmacol 55, 247-252.
50. Panchal, R. G., Smart, M. L., Bowser, D. N., Williams, D. A. & Petrou, S. (2002) Pore-forming proteins and their application in biotechnology. Curr Pharm Biotechnol 3, 99-115.
51. Schiavo, G. & van der Goot, F. G. (2001) The bacterial toxin toolkit. Nat Rev Mol Cell Biol 2, 530-537.
52. Lundberg, B. & Suominen, L. (1984) Preparation of biologically active analogs of serum low density lipoprotein. J Lipid Res 25, 550-558.
53. Chauhan, V., Wang, X., Ramsamy, T., Milne, R. W. & Sparks, D. L. (1998) Evidence for lipid-dependent structural changes in specific domains of apolipoprotein B100. Biochemistry 37, 3735-3742.
54. de Maagd, R. A., Bravo, A., Berry, C., Crickmore, N. & Schnepf, H. E. (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37, 409-433.
55. Sugawara-Tomita, N., Tomita, T. & Kamio, Y. (2002) Stochastic assembly of two-component staphylococcal gamma-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. J Bacteriol 184, 4747-4756.
56. Sayyed, A. H., Crickmore, N. & Wright, D. J. (2001) Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl Environ Microbiol 67, 5859-5861.
57. Tilley, S. J., Orlova, E. V., Gilbert, R. J., Andrew, P. W. & Saibil, H. R. (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247-256.
58. Shatursky, O., Heuck, A. P., Shepard, L. A., Rossjohn, J., Parker, M. W., Johnson, A. E. & Tweten, R. K. (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99, 293-299.
59. Zamzami, N., El Hamel, C., Maisse, C., Brenner, C., Munoz-Pinedo, C., Belzacq, A. S., Costantini, P., Vieira, H., Loeffler, M., Molle, G. & Kroemer, G. (2000) Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 19, 6342-6350.
60. Panchal, R. G., Cusack, E., Cheley, S. & Bayley, H. (1996) Tumor protease-activated, pore-forming toxins from a combinatorial library. Nat Biotechnol 14, 852-856.
61. Liu, S., Aaronson, H., Mitola, D. J., Leppla, S. H. & Bugge, T. H. (2003) Potent antitumor activity of a urokinase-activated engineered anthrax toxin. Proc Natl Acad Sci USA 100, 657-662.
62. Johannes, L. & Decaudin, D. (2005) Protein toxins: intracellular trafficking for targeted therapy. Gene Ther 12, 1360-1368.
63. Michl, P. & Gress, T. M. (2004) Bacteria and bacterial toxins as therapeutic agents for solid tumors. Curr Cancer Drug Targets 4, 689-702.
64. Potrich, C., Tomazzolli, R., Dalla Serra, M., Anderluh, G., Malovrh, P., Macek, P., Menestrina, G. & Tejuca, M. (2005) Cytotoxic activity of a tumor protease-activated pore-forming toxin. Bioconjug Chem 16, 369-376.
65. Liu, S., Bugge, T. H. & Leppla, S. H. (2001) Targeting of tumor cells by cell surface urokinase plasminogen activator-dependent anthrax toxin. J Biol Chem 276, 17976-17984.
66. Hobson, J. P., Liu, S., Rono, B., Leppla, S. H. & Bugge, T. H. (2006) Imaging specific cell-surface proteolytic activity in single living cells. Nat Methods 3, 259-261.
67. Liu, S., Redeye, V., Kuremsky, J. G., Kuhnen, M., Molinolo, A., Bugge, T. H. & Leppla, S. H. (2005) Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat Biotechnol 23, 725-730.
68. Rono, B., Romer, J., Liu, S., Bugge, T. H., Leppla, S. H. & Kristjansen, P. E. (2006) Antitumor efficacy of a urokinase activation-dependent anthrax toxin. Mol Cancer Ther 5, 89-96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文