跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳星宇
研究生(外文):Hsing-Yu Chen
論文名稱:Stenotrophomonasmaltophlila對多黏菌素B抗藥機制之研究
論文名稱(外文):Investigation of polymyxin B resistance in Stenotrophomonas maltophlila
指導教授:廖淑貞廖淑貞引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:94
語文別:中文
論文頁數:90
中文關鍵詞:多黏菌素B抗藥機制
外文關鍵詞:polymyxin BStenotrophomonas maltophlila
相關次數:
  • 被引用被引用:0
  • 點閱點閱:662
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Stenotrophomonas maltophilia 屬需氧性革蘭氏陰性桿菌,為重要的院內感染菌,其特徵在於對許多抗生素都具有抗藥性(如:β-actam類、aminoglycoside、quinolone……等),因此常造成臨床治療與院內感染管制上的困難。Polymyxin B是一種抗菌蛋白胜肽(antimicrobial peptides),利用其正電荷與細菌表面的負電荷產生交互作用,再藉由其兩性分子的特性穿透菌體外膜,提高細菌通透性,使細胞外物質大量進入細菌體內造成細菌死亡。根據之前文獻研究:polymyxin B對於臨床所分離之S. maltophilia大都為敏感性(>70% susceptible)。首先分析自2004-5年間由台大醫院所分離的70株多重抗藥性的臨床菌株對polymyxin B的MIC,發現其中85%為抵抗性(只有7%為敏感性)。故擬探討其機制。
我的研究主要針對S. maltophilia 對polymyxin B產生抗藥性的機制作探討,可分成四個部份論述:
第一部份、自發性突變研究:將臨床菌株S21利用自發性突變篩選出高抗藥性的突變株,研究其產生抗藥性的原因。
第二部分、S. maltophilia基因體研究:許多文獻提出polymyxin B抗性與雙組成調節系統(two-component system)PhoP/ PhoQ有關,但是沒有任何文獻證明S. maltophilia具有PhoP/ PhoQ基因,所以是利用目前已發表的PhoP/ PhoQ序列與S. maltophilia基因全長做比對,再藉由軟體分析並尋找其功能模組。並選殖PhoP/ PhoQ基因。
第三部分、PhoP/ PhoQ基因表現與polymyxin B感受性分析:先測試在不同鎂離子濃度下S. maltophilia對polymyxin B感受性之改變,再利用real-time PCR確認其PhoP表現量也會因鎂離子濃度而有所改變,最後在PhoP 大量表現菌株觀察到其對polymyxin B更具抗性來推測在S. maltophilia中會感受Mg2+ 的改變,來調控polymyxin B的抗性。
第四部份、Polymyxin B合併其他藥物研究:許多研究發現多重抗藥性的綠膿桿菌(Pseudomonas aeruginosa)藉由polymyxin B與其他抗生素(erythromycin, rifampine……等)合併使用可以提高其對抗生素的感受性。因此,最後是針對polymyxin B高抗藥性的臨床菌株做研究,探討polymyxin B與其他抗生素合併使用,是否可以提高S. maltophilia對抗生素的感受性。
本文是第一篇探討S. maltophilia 具有PhoP/ PhoQ系統且此PhoP/ PhoQ系統會感受鎂(或鈣)離子的變化來調控對polymyxin B的感受性。而對polymyxin B高抗藥性之菌株,可以利用polymyxin B與其他抗生素(如,rifampine)合併使用以提高治療效果。
Stenotrophomonas maltophilia is an aerobic, nonfermentative gram-negative bacterium. The organism has increasingly emerged as an important nosocomial pathogen, particularly for immunocompromised patients. It is characterized by its hegh-level resistance to a variety of structurally unrelated antimicrobials. Polymyxin B (PB) is a potent antibacterial lipopeptide composed of a positively charged cyclic peptide ring and a fatty acid containing tail. This capacity is due to its relatively high-affinity binding to lipid A of LPS(lipopolysaccharide). The polymyxin B has activity a wide variety of Gram-negative bacilli. We detected MIC of polymyxin B in seventy clinical isolates of S.maltophilia from NTUH, the susceptibility rate was lower than those found in prior studies(>70% susceptible). To unravel the resistance mechanisms of which S.maltophilia against polymyxin B, we isolated spontaneous polymyxin-resistant mutants and analyzed their difference from the wild type .
The two-component regulatory system, PhoP-PhoQ, in many Gram-negative bacteria regulates resistance to cationic antimicrobial peptides, such as polymyxin B, in response to low Mg2+ conditions. Here we firstly have identified the PhoP/ PhoQ system, in S. maltophilia by bioinformatics and gene cloning. We in addition constructed the PhoP, PhoQ and PhoP/ PhoQ overexpression strains and investracted the effect of overexpression the polymyxin B resistance in S. maltophilia. Our result indicated that overexpression of PhoP affects polymyxin B resistance. For the first time, we identified the PhoP/ PhoQ system in S. maltophilia and demonstrated that the system is regulated by Mg2+ and involved in the polymyxin B resistance.
The relative impermeability of outer membrane of S. maltophilia produces intrinsic resistance to many antibiotics. Certain polycationic substances such as polymyxin B are known to make the outer membrane of Gram-negative bacterial permeable to solutes that normally are unable to penetrate outer membrane. We tested the susceptibility of mutants and 42 clinical isolates to some antibiotics (erythromycin, rifampine, imipenem, cefepime, gentamicin, ciprofloxacin and cefotaxime) by agar diffusion method on plates containing 56U/mL of polymyxin B. We found polymyxin B increase the susceptibility of the mutants and clinical isolates to rifampin. The clinical utility of this combination remains to be established.
中文摘要• • • • • • • • • • • • • •• • 1
英文摘要 • • • • • • • • • • • •• • •• 3
第一章 緒論
第一節 Stenotrophomonas maltophilia簡介• • •5
第二節 Polymyxin B及其抗藥機轉簡介• • • • •8
第三節 多重抗藥性菌株之治療模式-合併用藥•• 15
第四節 研究緣由與目的••• • • • • •••••••18
第五節 實驗設計• • • ••••••••••••••••• 20
第二章 研究材料與實驗方法
第一節 臨床菌株之分析與自發性突變• • • • 22
第二節 生物資訊學分析• • ••••••• • • • 31
第三節 PhoP/ PhoQ基因體試驗• • • • • • •40
第四節 抗生素合併使用• • • •••••• • • •46
第三章 實驗結果
第一節 臨床菌株之分析與自發性突變• • • • 47
第二節 生物資訊學分析• • • • • • • • ••50
第三節 PhoP/ PhoQ基因體試驗• • • • • • •53
第四節 抗生素合併使用• • • • • • • • • 56
第四章 討論•• • • • • • • • • • • • •57
第五章 表 • • • • • • • •••••• • • • •61
第六章 圖 • • • • • • • •••••••• • ••65
第七章 附錄 • • • • • • • • • • • • •83
第八章 參考文獻• • • • • • • • • • • •84
1.Alakomi, H. L., E. Skytta, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, and I. M. Helander. 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001-5.
2.Alonso, A., and J. L. Martinez. 1997. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 41:1140-2.
3.Bader, M. W., S. Sanowar, M. E. Daley, A. R. Schneider, U. Cho, W. Xu, R. E. Klevit, H. Le Moual, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461-72.
4.Barbolla, R., M. Catalano, B. E. Orman, A. Famiglietti, C. Vay, J. Smayevsky, D. Centron, and S. A. Pineiro. 2004. Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates. Antimicrob Agents Chemother 48:666-9.
5.Bell, A., and R. E. Hancock. 1989. Outer membrane protein H1 of Pseudomonas aeruginosa: purification of the protein and cloning and nucleotide sequence of the gene. J Bacteriol 171:3211-7.
6.Bratu, S., J. Quale, S. Cebular, R. Heddurshetti, and D. Landman. 2005. Multidrug-resistant Pseudomonas aeruginosa in Brooklyn, New York: molecular epidemiology and in vitro activity of polymyxin B. Eur J Clin Microbiol Infect Dis 24:196-201.
7.Bratu, S., P. Tolaney, U. Karumudi, J. Quale, M. Mooty, S. Nichani, and D. Landman. 2005. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother 56:128-32.
8.Brown, M. R., and J. Melling. 1969. Role of divalent cations in the action of polymyxin B and EDTA on Pseudomonas aeruginosa. J Gen Microbiol 59:263-74.
9.Campos, M. A., M. A. Vargas, V. Regueiro, C. M. Llompart, S. Alberti, and J. A. Bengoechea. 2004. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72:7107-14.
10.Chang, L. L., H. F. Chen, C. Y. Chang, T. M. Lee, and W. J. Wu. 2004. Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 53:518-21.
11.Daugelavicius, R., E. Bakiene, and D. H. Bamford. 2000. Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrob Agents Chemother 44:2969-78.
12.Denton, M., and K. G. Kerr. 1998. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 11:57-80.
13.Di Bonaventura, G., I. Spedicato, D. D''Antonio, I. Robuffo, and R. Piccolomini. 2004. Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob Agents Chemother 48:151-60.
14.Eguchi, Y., and R. Utsumi. 2005. A novel mechanism for connecting bacterial two-component signal-transduction systems. Trends Biochem Sci 30:70-2.
15.Eliopoulos, G. M., and C. T. Eliopoulos. 1988. Antibiotic combinations: should they be tested? Clin Microbiol Rev 1:139-56.
16.Ernst, R. K., T. Guina, and S. I. Miller. 2001. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3:1327-34.
17.Evans, M. E., D. J. Feola, and R. P. Rapp. 1999. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 33:960-7.
18.Froelich, J. M., K. Tran, and D. Wall. 2006. A pmrA constitutive mutant sensitizes Escherichia coli to deoxycholic acid. J Bacteriol 188:1180-3.
19.Gales, A. C., R. N. Jones, and H. S. Sader. 2006. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin Microbiol Infect 12:315-21.
20.Giamarellos-Bourboulis, E. J., L. Karnesis, and H. Giamarellou. 2002. Synergy of colistin with rifampin and trimethoprim/sulfamethoxazole on multidrug-resistant Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 44:259-63.
21.Gilleland, H. E., Jr., and R. G. Murray. 1976. Ultrastructural study of polymyxin-resistant isolates of Pseudomonas aeruginosa. J Bacteriol 125:267-81.
22.Gould, V. C., A. Okazaki, and M. B. Avison. 2005. {beta}-Lactam resistance and {beta}-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. J Antimicrob Chemother.
23.Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835-42.
24.Groisman, E. A., J. Kayser, and F. C. Soncini. 1997. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179:7040-5.
25.Gunn, J. S. 2001. Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res 7:57-62.
26.Gunn, J. S., E. L. Hohmann, and S. I. Miller. 1996. Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol 178:6369-73.
27.Hancock, R. E. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156-64.
28.Helander, I. M., H. L. Alakomi, K. Latva-Kala, and P. Koski. 1997. Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiology 143 ( Pt 10):3193-9.
29.Hsueh, P. R., W. H. Chen, and K. T. Luh. 2005. Relationships between antimicrobial use and antimicrobial resistance in Gram-negative bacteria causing nosocomial infections from 1991-2003 at a university hospital in Taiwan. Int J Antimicrob Agents 26:463-472.
30.Katz, M., H. Tsubery, S. Kolusheva, A. Shames, M. Fridkin, and R. Jelinek. 2003. Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system. Biochem J 375:405-13.
31.Lai, C. H., C. Y. Chi, H. P. Chen, T. L. Chen, C. J. Lai, C. P. Fung, K. W. Yu, W. W. Wong, and C. Y. Liu. 2004. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia. J Microbiol Immunol Infect 37:350-8.
32.Landman, D., S. Bratu, M. Alam, and J. Quale. 2005. Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. J Antimicrob Chemother 55:954-7.
33.Lee, S. Y., J. L. Kuti, and D. P. Nicolau. 2006. Polymyxins: older antibiotics for a new threat. Conn Med 70:25-8.
34.Li, X. Z., L. Zhang, and K. Poole. 2002. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333-43.
35.Macfarlane, E. L., A. Kwasnicka, and R. E. Hancock. 2000. Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146 ( Pt 10):2543-54.
36.Macfarlane, E. L., A. Kwasnicka, M. M. Ochs, and R. E. Hancock. 1999. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305-16.
37.Manterola, L., I. Moriyon, E. Moreno, A. Sola-Landa, D. S. Weiss, M. H. Koch, J. Howe, K. Brandenburg, and I. Lopez-Goni. 2005. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 187:5631-9.
38.Marceau, M., F. Sebbane, F. Ewann, F. Collyn, B. Lindner, M. A. Campos, J. A. Bengoechea, and M. Simonet. 2004. The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is upregulated by the PhoP-PhoQ two-component system but not by PmrA-PmrB, and is not required for virulence. Microbiology 150:3947-57.
39.McKay, G. A., D. E. Woods, K. L. MacDonald, and K. Poole. 2003. Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun 71:3068-75.
40.McPhee, J. B., S. Lewenza, and R. E. Hancock. 2003. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50:205-17.
41.Merighi, M., A. Carroll-Portillo, A. N. Septer, A. Bhatiya, and J. S. Gunn. 2006. Role of Salmonella enterica Serovar Typhimurium Two-Component System PreA/PreB in Modulating PmrA-Regulated Gene Transcription. J Bacteriol 188:141-9.
42.Merighi, M., C. D. Ellermeier, J. M. Slauch, and J. S. Gunn. 2005. Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar Typhimurium PhoP and PmrA regulons in BALB/c mice. J Bacteriol 187:7407-16.
43.Moore, R. A., L. Chan, and R. E. Hancock. 1984. Evidence for two distinct mechanisms of resistance to polymyxin B in Pseudomonas aeruginosa. Antimicrob Agents Chemother 26:539-45.
44.Moskowitz, S. M., R. K. Ernst, and S. I. Miller. 2004. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186:575-9.
45.Nicas, T. I., and R. E. Hancock. 1980. Outer membrane protein H1 of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymyxin B, and gentamicin. J Bacteriol 143:872-8.
46.Nicodemo, A. C., M. R. Araujo, A. S. Ruiz, and A. C. Gales. 2004. In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. J Antimicrob Chemother 53:604-8.
47.Obritsch, M. D., D. N. Fish, R. MacLaren, and R. Jung. 2005. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353-64.
48.Ostronoff, M., F. Ostronoff, A. Sucupira, A. P. Souto Maior, M. Caniza, R. Florencio, M. C. Domingues, R. Calixto, and K. Matias. 2006. Multidrug-resistant Pseudomonas aeruginosa infection in neutropenic patients successfully treated with a combination of polymyxin B and rifampin. Int J Infect Dis.
49.Petersen, P. J., P. Labthavikul, C. H. Jones, and P. A. Bradford. 2006. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother.
50.Rahmati-Bahram, A., J. T. Magee, and S. K. Jackson. 1997. Effect of temperature on aminoglycoside binding sites in Stenotrophomonas maltophilia. J Antimicrob Chemother 39:19-24.
51.Rahmati-Bahram, A., J. T. Magee, and S. K. Jackson. 1996. Temperature-dependent aminoglycoside resistance in Stenotrophomonas (Xanthomonas) maltophilia; alterations in protein and lipopolysaccharide with growth temperature. J Antimicrob Chemother 37:665-76.
52.Roland, K. L., L. E. Martin, C. R. Esther, and J. K. Spitznagel. 1993. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol 175:4154-64.
53.Ruiz, N., B. Falcone, D. Kahne, and T. J. Silhavy. 2005. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121:307-17.
54.Sanchez, P., A. Alonso, and J. L. Martinez. 2002. Cloning and characterization of SmeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Antimicrob Agents Chemother 46:3386-93.
55.St Swierzko, A., T. Kirikae, F. Kirikae, M. Hirata, M. Cedzynski, A. Ziolkowski, Y. Hirai, S. Kusumoto, T. Yokochi, and M. Nakano. 2000. Biological activities of lipopolysaccharides of Proteus spp. and their interactions with polymyxin B and an 18-kDa cationic antimicrobial protein (CAP18)-derived peptide. J Med Microbiol 49:127-38.
56.Tamayo, R., B. Choudhury, A. Septer, M. Merighi, R. Carlson, and J. S. Gunn. 2005. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J Bacteriol 187:3391-9.
57.Tatman-Otkun, M., S. Gurcan, B. Ozer, B. Aydoslu, and S. Bukavaz. 2005. The antimicrobial susceptibility of Stenotrophomonas maltophilia isolates using three different methods and their genetic relatedness. BMC Microbiol 5:24.
58.Tran, A. X., M. E. Lester, C. M. Stead, C. R. Raetz, D. J. Maskell, S. C. McGrath, R. J. Cotter, and M. S. Trent. 2005. Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem 280:28186-94.
59.Tsubery, H., I. Ofek, S. Cohen, M. Eisenstein, and M. Fridkin. 2002. Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol Pharmacol 62:1036-42.
60.Tsubery, H., I. Ofek, S. Cohen, and M. Fridkin. 2000. Structure-function studies of polymyxin B nonapeptide: implications to sensitization of gram-negative bacteria. J Med Chem 43:3085-92.
61.Tsubery, H., H. Yaakov, S. Cohen, T. Giterman, A. Matityahou, M. Fridkin, and I. Ofek. 2005. Neopeptide antibiotics that function as opsonins and membrane-permeabilizing agents for gram-negative bacteria. Antimicrb Agents Chemother 49:3122-8.
62.Tzeng, Y. L., K. D. Ambrose, S. Zughaier, X. Zhou, Y. K. Miller, W. M. Shafer, and D. S. Stephens. 2005. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387-96.
63.Uhn Soo Cho, M. W. B., Maria F. Amaya, Margaret E. Daley Rachel E. Klevit, Samuel I. Miller and Wenqing Xu. 2006. Metal Bridges between the PhoQ Sensor Domain and the Membrane Regulate Transmembrane Signaling. Journal of Molecular Biology:1193-206.
64.Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395-411.
65.Vaara, M., T. Vaara, and M. Sarvas. 1979. Decreased binding of polymyxin by polymyxin-resistant mutants of Salmonella typhimurium. J Bacteriol 139:664-7.
66.Velasco, J., J. A. Bengoechea, K. Brandenburg, B. Lindner, U. Seydel, D. Gonzalez, U. Zahringer, E. Moreno, and I. Moriyon. 2000. Brucella abortus and its closest phylogenetic relative, Ochrobactrum spp., differ in outer membrane permeability and cationic peptide resistance. Infect Immun 68:3210-8.
67.Viljanen, P., and M. Vaara. 1984. Susceptibility of gram-negative bacteria to polymyxin B nonapeptide. Antimicrob Agents Chemother 25:701-5.
68.Wang, W. S., C. P. Liu, C. M. Lee, and F. Y. Huang. 2004. Stenotrophomonas maltophilia bacteremia in adults: four years'' experience in a medical center in northern Taiwan. J Microbiol Immunol Infect 37:359-65.
69.Wareham, D. W., D. C. Bean, C. M. Urban, and J. J. Rahal. 2006. In Vitro Activities of Polymyxin B, Imipenem, and Rifampin against Multidrug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 50:825-6.
70.Yamamoto, K., K. Hirao, T. Oshima, H. Aiba, R. Utsumi, and A. Ishihama. 2005. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280:1448-56.
71.Yoon, J., C. Urban, C. Terzian, N. Mariano, and J. J. Rahal. 2004. In vitro double and triple synergistic activities of Polymyxin B, imipenem, and rifampin against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 48:753-7.
72.Zelenitsky, S. A., H. Iacovides, R. E. Ariano, and G. K. Harding. 2005. Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 51:39-43.
73.Zhang, L., J. Parente, S. M. Harris, D. E. Woods, R. E. Hancock, and T. J. Falla. 2005. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother 49:2921-7.
74.Zughaier, S. M., H. C. Ryley, and S. K. Jackson. 1999. Lipopolysaccharide (LPS) from Burkholderia cepacia is more active than LPS from Pseudomonas aeruginosa and Stenotrophomonas maltophilia in stimulating tumor necrosis factor alpha from human monocytes. Infect Immun 67:1505-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top