|
1.Alakomi, H. L., E. Skytta, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, and I. M. Helander. 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001-5. 2.Alonso, A., and J. L. Martinez. 1997. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 41:1140-2. 3.Bader, M. W., S. Sanowar, M. E. Daley, A. R. Schneider, U. Cho, W. Xu, R. E. Klevit, H. Le Moual, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461-72. 4.Barbolla, R., M. Catalano, B. E. Orman, A. Famiglietti, C. Vay, J. Smayevsky, D. Centron, and S. A. Pineiro. 2004. Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates. Antimicrob Agents Chemother 48:666-9. 5.Bell, A., and R. E. Hancock. 1989. Outer membrane protein H1 of Pseudomonas aeruginosa: purification of the protein and cloning and nucleotide sequence of the gene. J Bacteriol 171:3211-7. 6.Bratu, S., J. Quale, S. Cebular, R. Heddurshetti, and D. Landman. 2005. Multidrug-resistant Pseudomonas aeruginosa in Brooklyn, New York: molecular epidemiology and in vitro activity of polymyxin B. Eur J Clin Microbiol Infect Dis 24:196-201. 7.Bratu, S., P. Tolaney, U. Karumudi, J. Quale, M. Mooty, S. Nichani, and D. Landman. 2005. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother 56:128-32. 8.Brown, M. R., and J. Melling. 1969. Role of divalent cations in the action of polymyxin B and EDTA on Pseudomonas aeruginosa. J Gen Microbiol 59:263-74. 9.Campos, M. A., M. A. Vargas, V. Regueiro, C. M. Llompart, S. Alberti, and J. A. Bengoechea. 2004. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72:7107-14. 10.Chang, L. L., H. F. Chen, C. Y. Chang, T. M. Lee, and W. J. Wu. 2004. Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 53:518-21. 11.Daugelavicius, R., E. Bakiene, and D. H. Bamford. 2000. Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrob Agents Chemother 44:2969-78. 12.Denton, M., and K. G. Kerr. 1998. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 11:57-80. 13.Di Bonaventura, G., I. Spedicato, D. D''Antonio, I. Robuffo, and R. Piccolomini. 2004. Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob Agents Chemother 48:151-60. 14.Eguchi, Y., and R. Utsumi. 2005. A novel mechanism for connecting bacterial two-component signal-transduction systems. Trends Biochem Sci 30:70-2. 15.Eliopoulos, G. M., and C. T. Eliopoulos. 1988. Antibiotic combinations: should they be tested? Clin Microbiol Rev 1:139-56. 16.Ernst, R. K., T. Guina, and S. I. Miller. 2001. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3:1327-34. 17.Evans, M. E., D. J. Feola, and R. P. Rapp. 1999. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 33:960-7. 18.Froelich, J. M., K. Tran, and D. Wall. 2006. A pmrA constitutive mutant sensitizes Escherichia coli to deoxycholic acid. J Bacteriol 188:1180-3. 19.Gales, A. C., R. N. Jones, and H. S. Sader. 2006. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin Microbiol Infect 12:315-21. 20.Giamarellos-Bourboulis, E. J., L. Karnesis, and H. Giamarellou. 2002. Synergy of colistin with rifampin and trimethoprim/sulfamethoxazole on multidrug-resistant Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 44:259-63. 21.Gilleland, H. E., Jr., and R. G. Murray. 1976. Ultrastructural study of polymyxin-resistant isolates of Pseudomonas aeruginosa. J Bacteriol 125:267-81. 22.Gould, V. C., A. Okazaki, and M. B. Avison. 2005. {beta}-Lactam resistance and {beta}-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. J Antimicrob Chemother. 23.Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835-42. 24.Groisman, E. A., J. Kayser, and F. C. Soncini. 1997. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179:7040-5. 25.Gunn, J. S. 2001. Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res 7:57-62. 26.Gunn, J. S., E. L. Hohmann, and S. I. Miller. 1996. Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol 178:6369-73. 27.Hancock, R. E. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156-64. 28.Helander, I. M., H. L. Alakomi, K. Latva-Kala, and P. Koski. 1997. Polyethyleneimine is an effective permeabilizer of gram-negative bacteria. Microbiology 143 ( Pt 10):3193-9. 29.Hsueh, P. R., W. H. Chen, and K. T. Luh. 2005. Relationships between antimicrobial use and antimicrobial resistance in Gram-negative bacteria causing nosocomial infections from 1991-2003 at a university hospital in Taiwan. Int J Antimicrob Agents 26:463-472. 30.Katz, M., H. Tsubery, S. Kolusheva, A. Shames, M. Fridkin, and R. Jelinek. 2003. Lipid binding and membrane penetration of polymyxin B derivatives studied in a biomimetic vesicle system. Biochem J 375:405-13. 31.Lai, C. H., C. Y. Chi, H. P. Chen, T. L. Chen, C. J. Lai, C. P. Fung, K. W. Yu, W. W. Wong, and C. Y. Liu. 2004. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia. J Microbiol Immunol Infect 37:350-8. 32.Landman, D., S. Bratu, M. Alam, and J. Quale. 2005. Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. J Antimicrob Chemother 55:954-7. 33.Lee, S. Y., J. L. Kuti, and D. P. Nicolau. 2006. Polymyxins: older antibiotics for a new threat. Conn Med 70:25-8. 34.Li, X. Z., L. Zhang, and K. Poole. 2002. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333-43. 35.Macfarlane, E. L., A. Kwasnicka, and R. E. Hancock. 2000. Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146 ( Pt 10):2543-54. 36.Macfarlane, E. L., A. Kwasnicka, M. M. Ochs, and R. E. Hancock. 1999. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305-16. 37.Manterola, L., I. Moriyon, E. Moreno, A. Sola-Landa, D. S. Weiss, M. H. Koch, J. Howe, K. Brandenburg, and I. Lopez-Goni. 2005. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol 187:5631-9. 38.Marceau, M., F. Sebbane, F. Ewann, F. Collyn, B. Lindner, M. A. Campos, J. A. Bengoechea, and M. Simonet. 2004. The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is upregulated by the PhoP-PhoQ two-component system but not by PmrA-PmrB, and is not required for virulence. Microbiology 150:3947-57. 39.McKay, G. A., D. E. Woods, K. L. MacDonald, and K. Poole. 2003. Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun 71:3068-75. 40.McPhee, J. B., S. Lewenza, and R. E. Hancock. 2003. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50:205-17. 41.Merighi, M., A. Carroll-Portillo, A. N. Septer, A. Bhatiya, and J. S. Gunn. 2006. Role of Salmonella enterica Serovar Typhimurium Two-Component System PreA/PreB in Modulating PmrA-Regulated Gene Transcription. J Bacteriol 188:141-9. 42.Merighi, M., C. D. Ellermeier, J. M. Slauch, and J. S. Gunn. 2005. Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar Typhimurium PhoP and PmrA regulons in BALB/c mice. J Bacteriol 187:7407-16. 43.Moore, R. A., L. Chan, and R. E. Hancock. 1984. Evidence for two distinct mechanisms of resistance to polymyxin B in Pseudomonas aeruginosa. Antimicrob Agents Chemother 26:539-45. 44.Moskowitz, S. M., R. K. Ernst, and S. I. Miller. 2004. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186:575-9. 45.Nicas, T. I., and R. E. Hancock. 1980. Outer membrane protein H1 of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymyxin B, and gentamicin. J Bacteriol 143:872-8. 46.Nicodemo, A. C., M. R. Araujo, A. S. Ruiz, and A. C. Gales. 2004. In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. J Antimicrob Chemother 53:604-8. 47.Obritsch, M. D., D. N. Fish, R. MacLaren, and R. Jung. 2005. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353-64. 48.Ostronoff, M., F. Ostronoff, A. Sucupira, A. P. Souto Maior, M. Caniza, R. Florencio, M. C. Domingues, R. Calixto, and K. Matias. 2006. Multidrug-resistant Pseudomonas aeruginosa infection in neutropenic patients successfully treated with a combination of polymyxin B and rifampin. Int J Infect Dis. 49.Petersen, P. J., P. Labthavikul, C. H. Jones, and P. A. Bradford. 2006. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother. 50.Rahmati-Bahram, A., J. T. Magee, and S. K. Jackson. 1997. Effect of temperature on aminoglycoside binding sites in Stenotrophomonas maltophilia. J Antimicrob Chemother 39:19-24. 51.Rahmati-Bahram, A., J. T. Magee, and S. K. Jackson. 1996. Temperature-dependent aminoglycoside resistance in Stenotrophomonas (Xanthomonas) maltophilia; alterations in protein and lipopolysaccharide with growth temperature. J Antimicrob Chemother 37:665-76. 52.Roland, K. L., L. E. Martin, C. R. Esther, and J. K. Spitznagel. 1993. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol 175:4154-64. 53.Ruiz, N., B. Falcone, D. Kahne, and T. J. Silhavy. 2005. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121:307-17. 54.Sanchez, P., A. Alonso, and J. L. Martinez. 2002. Cloning and characterization of SmeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Antimicrob Agents Chemother 46:3386-93. 55.St Swierzko, A., T. Kirikae, F. Kirikae, M. Hirata, M. Cedzynski, A. Ziolkowski, Y. Hirai, S. Kusumoto, T. Yokochi, and M. Nakano. 2000. Biological activities of lipopolysaccharides of Proteus spp. and their interactions with polymyxin B and an 18-kDa cationic antimicrobial protein (CAP18)-derived peptide. J Med Microbiol 49:127-38. 56.Tamayo, R., B. Choudhury, A. Septer, M. Merighi, R. Carlson, and J. S. Gunn. 2005. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J Bacteriol 187:3391-9. 57.Tatman-Otkun, M., S. Gurcan, B. Ozer, B. Aydoslu, and S. Bukavaz. 2005. The antimicrobial susceptibility of Stenotrophomonas maltophilia isolates using three different methods and their genetic relatedness. BMC Microbiol 5:24. 58.Tran, A. X., M. E. Lester, C. M. Stead, C. R. Raetz, D. J. Maskell, S. C. McGrath, R. J. Cotter, and M. S. Trent. 2005. Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem 280:28186-94. 59.Tsubery, H., I. Ofek, S. Cohen, M. Eisenstein, and M. Fridkin. 2002. Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol Pharmacol 62:1036-42. 60.Tsubery, H., I. Ofek, S. Cohen, and M. Fridkin. 2000. Structure-function studies of polymyxin B nonapeptide: implications to sensitization of gram-negative bacteria. J Med Chem 43:3085-92. 61.Tsubery, H., H. Yaakov, S. Cohen, T. Giterman, A. Matityahou, M. Fridkin, and I. Ofek. 2005. Neopeptide antibiotics that function as opsonins and membrane-permeabilizing agents for gram-negative bacteria. Antimicrb Agents Chemother 49:3122-8. 62.Tzeng, Y. L., K. D. Ambrose, S. Zughaier, X. Zhou, Y. K. Miller, W. M. Shafer, and D. S. Stephens. 2005. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187:5387-96. 63.Uhn Soo Cho, M. W. B., Maria F. Amaya, Margaret E. Daley Rachel E. Klevit, Samuel I. Miller and Wenqing Xu. 2006. Metal Bridges between the PhoQ Sensor Domain and the Membrane Regulate Transmembrane Signaling. Journal of Molecular Biology:1193-206. 64.Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395-411. 65.Vaara, M., T. Vaara, and M. Sarvas. 1979. Decreased binding of polymyxin by polymyxin-resistant mutants of Salmonella typhimurium. J Bacteriol 139:664-7. 66.Velasco, J., J. A. Bengoechea, K. Brandenburg, B. Lindner, U. Seydel, D. Gonzalez, U. Zahringer, E. Moreno, and I. Moriyon. 2000. Brucella abortus and its closest phylogenetic relative, Ochrobactrum spp., differ in outer membrane permeability and cationic peptide resistance. Infect Immun 68:3210-8. 67.Viljanen, P., and M. Vaara. 1984. Susceptibility of gram-negative bacteria to polymyxin B nonapeptide. Antimicrob Agents Chemother 25:701-5. 68.Wang, W. S., C. P. Liu, C. M. Lee, and F. Y. Huang. 2004. Stenotrophomonas maltophilia bacteremia in adults: four years'' experience in a medical center in northern Taiwan. J Microbiol Immunol Infect 37:359-65. 69.Wareham, D. W., D. C. Bean, C. M. Urban, and J. J. Rahal. 2006. In Vitro Activities of Polymyxin B, Imipenem, and Rifampin against Multidrug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 50:825-6. 70.Yamamoto, K., K. Hirao, T. Oshima, H. Aiba, R. Utsumi, and A. Ishihama. 2005. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280:1448-56. 71.Yoon, J., C. Urban, C. Terzian, N. Mariano, and J. J. Rahal. 2004. In vitro double and triple synergistic activities of Polymyxin B, imipenem, and rifampin against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 48:753-7. 72.Zelenitsky, S. A., H. Iacovides, R. E. Ariano, and G. K. Harding. 2005. Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 51:39-43. 73.Zhang, L., J. Parente, S. M. Harris, D. E. Woods, R. E. Hancock, and T. J. Falla. 2005. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother 49:2921-7. 74.Zughaier, S. M., H. C. Ryley, and S. K. Jackson. 1999. Lipopolysaccharide (LPS) from Burkholderia cepacia is more active than LPS from Pseudomonas aeruginosa and Stenotrophomonas maltophilia in stimulating tumor necrosis factor alpha from human monocytes. Infect Immun 67:1505-7.
|