跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 14:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭康峻
研究生(外文):Kang-Chun Peng
論文名稱:高效率及白光有機高分子電激發光元件
論文名稱(外文):High Efficiency and White Light Organic Polymer Light-Emitting Device
指導教授:李君浩
指導教授(外文):Jiun-Haw Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:96
中文關鍵詞:有機發光高分子白光
外文關鍵詞:organiclightemittingwhite lightpolymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
在本論文中,我們首先使用triton來修飾PEDOT:PSS。在我們的高分子電激發光元件中,PEDOT:PSS作用為一電洞注入層。因為triton是一種介面活性劑,所以它可以改善界面間的附著並且使PEDOT和PSS更均勻的分散在水溶液中。如此一來可增加PEDOT:PSS的導電度並且增加電洞注入來提高元件效率。接著我們使用一新的發光材料為發光層製作高分子電激發光元件。為了提高元件的效率,我們使用BCP作一電洞阻擋層,Alq3作一電子傳輸層和新的高分子材料(OPV-IPDI)作一電洞傳輸層,這樣的結構與只有PEDOT:PSS的元件相比可以提高六倍的電流效率。更進一步的,我們將PEDOT:PSS作一電洞注入層,OPV-IPDI和它的衍生高分子(OPV-OXD,OXD-IPDI和OPV-Si)作電洞傳輸層應用在小分子電激發光元件上。與使用傳統電洞傳輸材料NPB的元件相比,使用新的高分子材料(OPV-IPDI和OPV-OXD)製作的元件可以降低約兩伏的驅動電壓並且改善元件的電流效率達至兩倍以上。
另一方面,靠著一個簡單的旋塗製程,我們旋塗高分子發光材料MEHPPV於高效率藍光小分子電激發光元件的出光面上。藉由光轉換原理,我們成功的製作發出純白光(0.323,0.329)的元件。在10 mA/cm2的操作電流下,此白光元件的白光演色指數為71.1,流明效率為10.1 lm/W。
In this thesis, we use triton to modify PEDOT:PSS which is used as the hole injection in our PLED device. Because triton is a kind of interface active solvent, it can improve the adhesion of the interface, and make PEDOT and PSS disperse uniformly in water solution. That can raise the conductivity and help hole-injection capability to improve device efficiency. Then we use a new light-emitting material (P1) as the emitting layer in PLEDs. To improve device performance, we use BCP as the hole blocking layer, Alq3 as the electron transport layer and the new polymer material (OPV-IPDI) as the hole transport layer, which can improve the efficiency by six times compared to the control device Furthermore, we apply PEDOT:PSS, OPV-IPDI and its derivatives (OPV-OXD, OXD-IPDI, and OPV-Si) as the hole injection and transport layers respectively in small molecule OLEDs. Compared with the conventioanl hole transport material, we demonstrate our new hole transport materials (OPV-IPDI and OPV-OXD) can effectively reduce the driving voltage by 2V and improve the current efficiency more than twice.
On the other hand, by using a simple spin-coating process, we spin polymer luminescent material MEHPPV on the emitting side of the high efficiency blue small molecule OLED. Based on luminescence conversion mechanism, we successfully fabricate a pure white light (0.323, 0.329) device based on a high efficiency blue small molecule OLED. The white light device has color rendering index of 71.1 and the luminous efficiency of 10.1 lm/W at 10 mA/cm2.
Contents
Chapter 1 Introduction.........................................................................1
1.1 Organic Light Emitting Device………………………………...2
1.1.1 Classification of Organic Light Emitting Device……….....2
1.1.2 Structure of Organic Light Emitting Device………………3
1.1.3 Principle of Eletroluminescence…………………………...6
1.2 Hole Transport Layer in OLED………………………………...6
1.3 Polymer Emitting Materials…………………………………..11
1.4 White Light…………………………………………………...12
1.5 Motivation…………………………………………………….14
1.6 Thesis Organization…………………………………………...14
Reference………………………………………………………………..20
Chapter 2 Fabrication Processes, Measurement Systems and
Calculations……………………………………………..27
2.1 Organic Materials……………………………………………..29
2.1.1 Polymer Materials………………………………………..29
2.1.2 Small Molecule Materials………………………………..31
2.2 Synthesis of Polymer HTL Materials…………………………32
2.3 Experiment Equipment………………………………………..33
2.3.1 Ultrasonic cleaner………………………………………...33
2.3.2 Electronic Balance Meter………………………...………33
2.3.3 Magnetic Control Stirrer…………………………………34
2.3.4 Spin Coater……………………………………………….34
2.3.5 Hot Plate………………………………………………….34
2.3.6 Vacuum Themal Evaporator……………………………...35
2.4 Device Fabrication……………………………………………36
2.4.1 Experiment solvent………………………………………36
2.4.2 Experiment Steps………………………………………...36
2.5 Measurement System…………………………………………40
2.5.1 Glass Transition Temperature (Tg) Measurement………..40
2.5.2 UV-Vis Absorption Spectrum……………………………41
2.5.3 PhotoLuminescence Spectrum…………………………...42
2.5.4 HOMO and LUMO Measurement………………… ……43
2.5.5 B-I-V and Viewing-Angle……………………………….44
2.5.6 Lifetime Measurement…………………………………...44
2.5.7 Color Rendering Index Calculation……………………...45
Reference……………………………………………………………….63

Chapter 3 Result and Discussion…………………………………...66
3.1 Modification of PEDOT:PSS…………………………………66
3.2 PLEDs with P1 as the EML…………………………………..69
3.3 Small Molecule OLEDs with Polymer HTL………………….71
3.4 White Light based on The High Efficient Blue Small
Molecule OLED……………………………………………...75
Reference………………………………………………………………..91
Chaper 4 Conclusion and Further work…………………………...92
4.1 Conclusions and Future Works of PLEDs…………………….94
4.2 Conclusions and Future Works of White Light Device………96
[1.1]E. Gurnee and R. Fernandez, “Organic electroluminescent phosphors,”US Patent 3 172 862 (1965).
[1.2]M. Pope, H. Kallman, and P. Magnante, “Electroluminesence in Organic Crystals,”J. Chem. Phys. 38, 2042 (1963).
[1.3]W. Digby and M. Schadt, “Electroluminescent device with light emitting aromatic, hydrocarbon material,”US Patent 3 621 321 (1971).
[1.4]C. W. Tang, “Multilayer organic photovoltaic elements,”US Patent 4 164 431 (1979).
[1.5]C. W. Tang, “Organic electroluminescent cell,”US Patent 4 356 429 (1982).
[1.6]C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913 (1987).
[1.7]C. W. Tang, S. A. Vanslyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610 (1989).
[1.8]R. Partridge, “Radiation sources,”US Patent 3 995 299 (1976).
[1.9]P. Vincett, W. Barlow, R. Hann, and G. Roberts, Thin Solid Films, 94, 171 (1982).
[1.10]J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burn, and A. Holmes, “Light-emitting diodes based on conjugated polymers,”Nature, 347, 539 (1990).
[1.11]R. Wessling and R. Zimmerman, “Polyelectrolytes from bis sulfonium salts,”US Patent 3 401 152 (1968).
[1.12]R. Wessling and R. Zimmerman, “Polyxylylidene articles,”US Patent 3 706 677 (1972).
[1.13]R. Friend, J. Burroughes, and D. Bradley, “Electroluminescent devices,”US Patent 5 247 190 (1993).
[1.14]顧鴻壽、周本達、陳密、張德安、樊雨心、周宜衡等, “光電平面面板顯示器基本概論,”高立圖書有限公司。
[1.15]T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,”Appl. Phys. Lett. 72, 519–521 (1998).
[1.16]D. Braun and A. J. Heeger, “Visible light emission from semiconducting polymer diodes,” Appl. Phys. Lett. 58, 1982 (1991).
[1.17]C. Adachi, T. Tsutsui and S. Saito, “Organic electroluminescent device having a hole conductor as an emitting layer,” Appl. Phys. Lett. 55, 1489 (1989).
[1.18]C. Adachi, S. Tokito, T. Tsutsui and S. Saito, “Electroluminescence in organic thin films with three-layer structure,” Jan. J. Appl. Phys. Part2, 27, L269 (1988).
[1.19]C. Adachi, S. Tokito, T. Tsutsui and S. Saito, “Organic electroluminescent device with a three-layer structure,” Jan. J. Appl. Phys. Part2, 27, L713 (1988).
[1.20]J. Scott, J. Kaufman, P. Brock, R. Dipieto, J. Salem, and J. Goitia,“Degradation and failure of MEH-PPV light-emitting diodes,” J. Appl. Phys. 79, 2745 (1996).
[1.21]J. Mort and G. Pfister, “Electronic Properties of Polymers,” edited by J.Mort and G. Pfister (Wiley Interscience, New York, 1982), pp. 215-265.
[1.22]J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “Bright blue electroluminescence from poly(N-vinylcarbazole),”Appl. Phys. Lett. 63, 2627 (1993).
[1.23]W. L. Yu, Y. Cao, J. Pei, W. Huang, and A. J. Heeger, “Blue polymer light-emitting diodes from poly(9,9-dihexylfluorene- alt-co-2, 5-didecyloxy- para-phenylene),” Appl. Phys. Lett. 75, 3270 (1999).
[1.24]S. E. Shaheen, G. E. Jabbour, B. Kippelen, N. Peyghambarian, J. D. Anderson, S. R. Marder, N. R. Armstrong, and E. Bellmann and R. H. Grubbs, “Organic light-emitting diode with 20 lm/W efficiency using a triphenyldiamine side-group polymer as the hole transport layer,” Appl. Phys. Lett. 74, 3212 (1999).
[1.25]C. Giebeler and H. Antoniadis, Donal D. C. Bradley, and Y. Shirota, “Influence of the hole transport layer on the performance of organic light-emitting diodes,” J. Appl. Phys. 85, 608 (1999).
[1.26]S. A. VanSlyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,”Appl. Phys. Lett. 69, 2160 (1996).
[1.27]H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation Mechanism of Small Molecule-Based Organic Light-Emitting Devices,” Science 283, 1900 (1999).
[1.28]H. Aziz and Z. D. Popovic, “Study of organic light emitting devices with a 5,6,11,12-tetraphenylnaphthacene (rubrene)-doped hole transport layer,”Appl. Phys. Lett. 80, 2180 (2002).
[1.29]G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,”J. Appl. Phys. 83, 5399 (1998).
[1.30]Y. Yang, and A. J. Heeger, “Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency,”Appl. Phys. Lett. 64, 1245 (1994).
[1.31]L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. Reynolds, “Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future,”Adv. Mater.12, 481 (2000).
[1.32]A. Petr, F. Zhang, H. Peisert, M. Knupfer, and L. Dunsch, “Electrochemical adjustment of the work function of conducting polymers,” Highlights, 19 (2003).
[1.33]W. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z. H. Kafafi, “Molecular organic light-emitting diodes using highly conducting polymers as anodes,” Appl. Phys. Lett. 80, 3844 (2002).
[1.34]Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, “Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode,” Synth. Met. 87,171–174 (1997).
[1.35]Y. Ohmori, M. Uchida, K. Muro, K. Yoshino, “Blue Electroluminescent Diodes Utilizing Poly(alkylfluorene),”Jpn. J. Appl. Phys. 30, L1941 (1991).
[1.36]M. Berggren, O. Inganas, and G. Gustafsson, “Light-emitting diodes with variable colours from polymer blends,”Nature, 372, 444 (1994).
[1.37]P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417–418 (1997).
[1.38]H. F. Xiang, S. C. Yu and C. M. Che, and P. T. Lai, “Efficient white and red light emission from GaN/tris-(8-hydroxyquinolato)Aluminum/platinum(II) meso-tetrakis(pentafluorophenyl) porphyr in hybrid light-emitting diodes,” Appl. Phys. Lett. 83, 1518 (2003).

[2.1]H. Becker, H. Spreitzer, W. Kreuder, E. Kluge, H. Schenk, I. Parker, and Y. Cao, “ Soluble PPVs with Enhanced Performance-A Mechanistic Approach ,” Adv. Mater. 12, 42 (2000).
[2.2]陳可欣,“以2-(五苯代苯) 聯苯為核心之有機電激發光高分子材料的合成與元件製備,”碩士論文 (2003).
[2.3]T. W. Hagler, K. Pakbaz, K. F. Voss, and A. J. Heeger, “Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene” Phys. Rev. B 44, 8652 (1991).
[2.4]吳佳芳, “Electrical and Optical Measurements of Blue Organic Light-Emitting Devices,” 碩士論文 (2005).
[2.5]林典群, “Blue Organic Light-Emitting Device and the Study of the Mixed-Layer Emitting Layer,” 碩士論文 (2005).
[2.6]M. Suzuki, S. Tokito, F. Sato, T. Igarashi, K. Kondo, T. Koyama, and T. Yamaguchi, “Highly efficient polymer light-emitting devices using ambipolar phosphorescent polymers,” Appl. Phys. Lett., 86, 103507 (2005).
[2.7]Z. Y. Xie, L. S. Hung, and S. T. Lee, “High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure,” Appl. Phys. Lett., 79, 1048 (2001).
[2.8]Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, “Organic Electroluminescent Devices with 8-Hydroxyquinoline Derivative-Metal Complexes as an Emitter ,”Jpn. J. Appl. Phys., Part 2 32, L514 (1993).
[2.9]Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, and K. Shibata,“Organic light-emitting diodes using 3- or 5-hydroxyflavone–metal Complexes,” Appl. Phys. Lett., 71, 3388 (1997).
[2.10]J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo,” Appl. Phys. Lett., 72, 2660 (1997).
[2.11]T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Appl. Phys. Lett., 72, 519 (1997).
[2.12]吳世康, 高分子光化學導論-基礎與應用, 科學出版社.
[2.13]G. Wyszecki and W.S. Stiles, “Color science : concepts and methods, quantitative data, and formulae,” New York : John Wiley & Sons (2000).

[3.1]T. Granlund, L. A. A. Pettersson, and O. Inganas, “Determination of the emission zone in a single-layer polymer light-emitting diode through optical measurements,” J. Appl. Phys. 89, 5897 (2001).
[3.2]A. J. Makinen, I. G. Hill, R. Shashidhar, N. Nikolov, and Z. H. Kafafi, “Hole injection barriers at polymer anode
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 邱連煌(民91)。教室幽默:讀書生夾歡笑聲(下)。國教新知,48:4,80-95。
2. 邱連煌(民91)。班級經營:幽默與學生管教。國教天地,147,13-30。
3. 林碧真(民88)。學生心中的最愛-談學生喜歡的教師類型。教育實習輔導季刊,4 ,85-90。
4. 李永怡(民81)。讓孩子的創意滋長。學前教育,15:3,22-23。
5. 吳元良(民84)。不同數學課程﹑性別﹑社經地位的國小學生在數學態度及成就上比較之研究,屏東師範學院國民教育研究所碩士論文。
6. 邱連煌(民91)。教室幽默:讀書生夾歡笑聲(上)。國教新知,48:3,55-66。
7. 邱連煌(民92)。考、烤、拷:幽默與測試焦慮(上)。國教天地,152,4-12。
8. 邱連煌(民93)。考、烤、拷:幽默與測試焦慮(下)。國教天地,158,。
9. 邱發忠、陳學志、卓淑玲(民91)。幽默創造訓練之課程設計及效果評估研究,。教育心理學報,34卷,2,179-198。
10. 許扶堂(民91)。向快樂數學教室前進。國教輔導,42:1,26-30。
11. 陳學志(民92)。從「哈哈」到「啊哈」——統整知、情、意、行的幽默課程對創造力培養的影響。教育心理學報,35,393-411。
12. 陳學志、鄭昭明、卓淑玲(民90)。笑話中幽默因子的訊息整合歷程研究。中華心理學刊,43,137-153。
13. 蔡秀緞(民88)。如何改善班級師生互動關係。北縣教育,28,69-73。
14. 鄭聖敏(民90)。資優學生的情意教育-培養幽默感。資優教育,79,26-36。
15. 賴姝秀(民93)。。將數學小故事融入小二學領域之教學。國教天地,157,66。