跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李翔傑
研究生(外文):Hsiang-Chieh Lee
論文名稱:配合光學同調斷層掃瞄從事口腔癌臨床診斷之新型探頭
論文名稱(外文):A Newly-designed Probe for Clinical Oral Cancer Diagnosis with Optical Coherence Tomography
指導教授:楊志忠楊志忠引用關係
指導教授(外文):Chih-Chung Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:84
中文關鍵詞:光學同調斷層掃瞄口腔癌探頭
外文關鍵詞:optical coherence tomographyoral cavity cancerprobe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
在本論文中,我們架設了一套光纖式光學同調斷層掃瞄系統,系統本身採用中心波長1300奈米,具有頻寬100奈米的超亮二極體作為光源。在這套系統中,為了達到快速掃瞄的需求,我們採用相位延遲器以達到光程差的快速調變,相位延遲器的掃瞄速度為250 Hz。系統本身的縱向解析度為8微米,靈敏度為80 dB。我們針對口腔內掃瞄的需求設計了一個小型、旋轉式的探頭作為掃瞄之用。系統本身的橫向解析度為14微米。利用這個特殊設計的小型探頭,我們先針對皮膚做活體的掃瞄。根據掃瞄結果發現,我們可清楚分辨皮膚中角質層、表皮以及真皮,這三層主要結構。影像的掃瞄深度可達600到800微米。皮膚掃瞄影像的尺寸為1平方釐米,擷取速度則小於一秒。
為了測試臨床掃瞄的可靠性,我們掃瞄了活體口腔黏膜的影像。在我們的掃瞄過程中,我們針對口腔黏膜中,嘴唇黏膜以及特化黏膜(舌頭背面)這兩種做掃瞄。在這些口腔黏膜的掃瞄結果中發現,我們可以觀察到口腔黏膜中上皮層和固有層兩層結構,部分能看到次黏膜的構造。影像的掃瞄深度可達600到700 微米。此外,我們也可在特化黏膜的掃瞄結果中發現,固有層中某些腺體的存在。 目前這套系統將在台灣大學醫學院附設醫院進行口腔癌的臨床掃瞄。
In this research, a fiber-based optical coherence tomography (OCT) system is built, which utilized the broadband SLD light source with the central wavelength at 1300 nm and the spectral width at 100 nm. In the OCT system, an optical phase delay line is implemented for the fast scanning requirement with the scanning frequency up to 250 Hz. The axial resolution of the OCT system is 8 microns. Its sensitivity is 80 dB. A compact rotation-type probe specially designed for the oral cavity scanning is fabricated. The lateral resolution of the system is 14 microns. With this hand-held probe, the in vivo scanning results of human skin are first obtained. In such scanning, three major layers, including stratum corneum, epidermis, and dermis, can be clearly identified. The penetration depth of human skin scanning images is 600~800 μm. The image size of human skin scanning of 1 mm x 1mm can be completed in less than one second.
To test the clinical application, in vivo scanning of oral mucosa was performed. In such scanning, two types of oral mucosa, including labial mucosa (lip) and specialized mucosa (the dorsal surface of tongue) are scanned. In the labial scanning images, three major layers, including epithelium, lamina propria, and submucosa, can be identified. The scanning depth of labial mucosa was 600~700 μm. In scanning the images of specialized mucosa, some glands inside the layer of lamina propria can be observed. This OCT system will be used for clinical diagnosis of oral cavity cancer at the National Taiwan University Hospital.
致謝………………………………………………i
中文摘要…………………………………………ii
Abstract..………………………………………iii
Contents…………………………………………iv

Chapter 1
Introduction..............................................1
1.1 Optical Bioimaging Methods............................1
1.2 Optical Properties of Biological Tissues..............4
1.3 Oral Cavity...........................................8
1.3.1 Oral mucosa Structures............................8
1.3.2 Oral cavity cancer...............................10
1.4 Research Motivations.................................12

Chapter 2
Fundamentals of Optical Coherence Tomograph..............14
2.1 Low-coherence Interferomery..........................17
2.2 Tissue Scattering Models.............................21
2.3 Configurations of Hardware and Scanning Optics.......22
2.3.1 Light Sources for Optical Coherency Tomography...22
2.3.2 Reference Arm Configurations.....................24
2.3.3 Sample Arm Configurations: Probes and Endoscopes.27
2.4 Functional OCT Modalities............................30
2.4.1 Polarization Sensitive OCT (PSOCT) ..............31
2.4.2 Doppler OCT......................................33
2.4.3 Spectroscopic OCT................................34
2.5 Spectral- or Fourier-domain OCT (SDOCT)..............36
2.6 Current Biomedical Applications of OCT...............39

Chapter 3
Optical Coherence Tomography System for Oral Cavity Cancer Studies..................................................40
3.1 OCT System...........................................40
3.2 Light Source.........................................42
3.3 Detector and Signal Processing.......................43
3.3.1 Detector.........................................43
3.3.2 Signal Processing (Software Demodulation)........44
3.4 Reference Arm Configuration (Phase Delay Line).......46
3.5 Sample Arm Configuration (Probe Design)..............50
3.5.1 Lateral Scanning Configuration (Rotation Motor)..51
3.5.2 Probe Design Process.............................53
3.5.3 Alignment Procedures.............................56

Chapter 4
Scanning Results and Discussions.........................58
4.1 In vivo OCT scanning images of Healthy Human Skin....58
4.2 In vivo OCT scanning images of Healthy Human Oral Mucosa..............................................62

Chapter 5
Conclusions and Discussion...............................66
5.1 Summary..............................................66
5.2 Future Work..........................................67

References...............................................68
[1] P. N. Prasad, “Introduction to biophotonics,” John Wiley & Sons, Inc. 2003
[2] A. R. Ten Cate, “Oral Histology: Development, Structure, and Function,” Fifth Edition, Mosby-Year Book, Inc. 1998
[3] “Tables of Major Cause of Death by Cancer in Taiwan in 2004,” Department of Health, Executive Yuan, R.O.C. (Taiwan)
[4] “Cancer Facts and Figures,” American Cancer Society, Washington, D.C., pp. 4, 2000
[5] J. Regezi and J. Sciubba, Eds., “Oral Pathology,” W.B. Saunders, Philadelphia, pp. 77–90, 1993
[6] “Cancer Surveillance Section Annual Report,” California Department of Health Services, Mar. 1999
[7] C. M. Chen, C. J. Lin, P. Chang, “Statistic and Analysis of 234 Oral Cavity Cancer Cases,” The Journal of Taiwan Otolaryngology-Head and Neck Surgery, 19:20-25, 1984
[8] B. W. Neville, D. D. Damm, C. M. Allen, and J. E. Bouquot, “Epithelial Pathology,“ In: Oral Maxillofacial Pathology, pp. 259-321, W. B. Sauders, Philadelphia, PA, U.S.A. 1995.
[9] P. W. Smith, W. Jung, M. Brenner, K. Osann, H. Beydoun, D. Messadi, and Z. Chen, “In vivo optical coherence tomography for the diagnosis of oral malignancy,” Laser. Surg. Med., vol. 35, pp. 269–275, 2004.
[10] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991).
[11] R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158-160 (1987).
[12] K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603-1606 (1987).
[13] A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 186-188 (1988).
[14] W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett., 17, 4–6, (1992).
[15] J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042, (1993).
[16] Gayen, S. K., and Alfano, R. R., “Emerging Biomedical Imaging Techniques,” Optics & Photonics News (1996).
[17] J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Select. Topics in Quantum Electron., 5(4):1205-1215, 1999.
[18] M. Lai, “Kilohertz Scanning Optical Delay Line Employing a Prism Array,” Appl. Opt. 40, 6334-6336 (2001).
[19] A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563- (1988).
[20] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol., 113, 325, 1995.
[21] C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Disease, Slack Inc., Thorofare, NJ, 1996.
[22] G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543-545 (1996).
[23] P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29, 1236-1238 (2004).
[24] J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28, 628-630 (2003).
[25] Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966-1968 (2001).
[26] S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instrumentsfor optical coherence tomography,” Opt. Lett. 22, 1618-1620 (1997).
[27] Y. Wang, M. Bachman, G. -P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30, 53-55 (2005).
[28] K. Schoenenberger, B. W. Colston, Jr., D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,” Appl. Opt. 37, 6026-6036 (1998).
[29] B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610-1612 (2002).
[30] M. G. Ducros, J. D. Marsack, H. G. Rylander III, S. L. Thomsen, and T. E. Milner, “Primate retina imaging with polarization-sensitive optical coherence tomography,” J. Opt. Soc. Am. B 18, 2945-2956 (2001).
[31] S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101-103 (2002).
[32] C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780-790 (2001).
[33] S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42, 5191-5197 (2003).
[34] M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992).
[35] X. J. Wang, T. E. Milner and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337-1339 (1995).
[36] X. J. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt. 36, 144-149 (1997).
[37] Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64-67 (1997).
[38] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1-3 (1997).
[39] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119-1121 (1997).
[40] J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439-1441 (1997).
[41] S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448-1450 (2000).
[42] U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000).
[43] D. J. Faber, E. G. Mik, M. C. G. Aalders and T. G. van Leeuwen, “Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436-1438 (2003).
[44] C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express 12, 4790-4803 (2004).
[45] D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12, 5487-5501 (2004).
[46] C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29, 1647-1649 (2004).
[47] A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Comm. 117, 43-48 (1995).
[48] G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase-and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811-1813 (1997).
[49] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003).
[50] R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004).
[51] R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
[52] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “optical coherence tomography using frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997).
[53] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002).
[54] N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480-482 (2004).
[55]M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Measurement of imaging of water concentration in human cornea with differential absorption optical coherence tomography,” Opt. Express 11, 2190-2197 (2003).
[56] M. Wojtkowski, A. Kowalczyk, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002).
[57] Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express 12, 6184-6191 (2004).
[58] E. Gotzinger, M. Pircher, R. Leitgeb, C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583-594 (2005).
[59] S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1142-1147 (2006).
[60] C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079-1081 (2006)
[61] Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilber transformation,” Opt. Lett. 27, 98-100 (2002).
[62] C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000).
[63] X. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, and J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38, 2092-2096 (1999).
[64] Y. Wang, M. Backman, G. P. Li, S. Guo, B. J. F. Wang, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30, 53-55 (2005).
[65] G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope of optical coherence tomography,” Opt. Lett. 21, 543-545 (1996).
[66] A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayyashi, M. V. Sivak, and J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358-1360 (1999).
[67] N. V. Iftimia, B. E. Bouma, J. F. de Boer, B. H. Park, B. Cense, and G. J. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Express 12, 4025-4034 (2004).
[68] M. Brezinski and J. Fujimoto, “Imaging the cardiovascular system with optical coherence tomography”, Optics & Photonics News 34-35 (2002).
[69] B. E. Bouma, G. J. Tearney, I. P. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839-1841 (1996).
[70] M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004).
[71] Y. Yhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114-116 (2000).
[72] Y. Yhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358-1360 (2000).
[73] B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, and B. E. Boume, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490-3497 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top