|
[1] P. N. Prasad, “Introduction to biophotonics,” John Wiley & Sons, Inc. 2003 [2] A. R. Ten Cate, “Oral Histology: Development, Structure, and Function,” Fifth Edition, Mosby-Year Book, Inc. 1998 [3] “Tables of Major Cause of Death by Cancer in Taiwan in 2004,” Department of Health, Executive Yuan, R.O.C. (Taiwan) [4] “Cancer Facts and Figures,” American Cancer Society, Washington, D.C., pp. 4, 2000 [5] J. Regezi and J. Sciubba, Eds., “Oral Pathology,” W.B. Saunders, Philadelphia, pp. 77–90, 1993 [6] “Cancer Surveillance Section Annual Report,” California Department of Health Services, Mar. 1999 [7] C. M. Chen, C. J. Lin, P. Chang, “Statistic and Analysis of 234 Oral Cavity Cancer Cases,” The Journal of Taiwan Otolaryngology-Head and Neck Surgery, 19:20-25, 1984 [8] B. W. Neville, D. D. Damm, C. M. Allen, and J. E. Bouquot, “Epithelial Pathology,“ In: Oral Maxillofacial Pathology, pp. 259-321, W. B. Sauders, Philadelphia, PA, U.S.A. 1995. [9] P. W. Smith, W. Jung, M. Brenner, K. Osann, H. Beydoun, D. Messadi, and Z. Chen, “In vivo optical coherence tomography for the diagnosis of oral malignancy,” Laser. Surg. Med., vol. 35, pp. 269–275, 2004. [10] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991). [11] R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158-160 (1987). [12] K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603-1606 (1987). [13] A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 186-188 (1988). [14] W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett., 17, 4–6, (1992). [15] J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042, (1993). [16] Gayen, S. K., and Alfano, R. R., “Emerging Biomedical Imaging Techniques,” Optics & Photonics News (1996). [17] J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Select. Topics in Quantum Electron., 5(4):1205-1215, 1999. [18] M. Lai, “Kilohertz Scanning Optical Delay Line Employing a Prism Array,” Appl. Opt. 40, 6334-6336 (2001). [19] A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563- (1988). [20] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol., 113, 325, 1995. [21] C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Disease, Slack Inc., Thorofare, NJ, 1996. [22] G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543-545 (1996). [23] P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29, 1236-1238 (2004). [24] J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28, 628-630 (2003). [25] Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966-1968 (2001). [26] S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instrumentsfor optical coherence tomography,” Opt. Lett. 22, 1618-1620 (1997). [27] Y. Wang, M. Bachman, G. -P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30, 53-55 (2005). [28] K. Schoenenberger, B. W. Colston, Jr., D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,” Appl. Opt. 37, 6026-6036 (1998). [29] B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610-1612 (2002). [30] M. G. Ducros, J. D. Marsack, H. G. Rylander III, S. L. Thomsen, and T. E. Milner, “Primate retina imaging with polarization-sensitive optical coherence tomography,” J. Opt. Soc. Am. B 18, 2945-2956 (2001). [31] S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101-103 (2002). [32] C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780-790 (2001). [33] S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42, 5191-5197 (2003). [34] M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992). [35] X. J. Wang, T. E. Milner and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337-1339 (1995). [36] X. J. Wang, T. E. Milner, Z. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt. 36, 144-149 (1997). [37] Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64-67 (1997). [38] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1-3 (1997). [39] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119-1121 (1997). [40] J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22, 1439-1441 (1997). [41] S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25, 1448-1450 (2000). [42] U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000). [43] D. J. Faber, E. G. Mik, M. C. G. Aalders and T. G. van Leeuwen, “Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436-1438 (2003). [44] C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express 12, 4790-4803 (2004). [45] D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12, 5487-5501 (2004). [46] C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29, 1647-1649 (2004). [47] A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distance by backscattering spectral interferometry,” Opt. Comm. 117, 43-48 (1995). [48] G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase-and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811-1813 (1997). [49] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003). [50] R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004). [51] R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [52] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “optical coherence tomography using frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997). [53] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002). [54] N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29, 480-482 (2004). [55]M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Measurement of imaging of water concentration in human cornea with differential absorption optical coherence tomography,” Opt. Express 11, 2190-2197 (2003). [56] M. Wojtkowski, A. Kowalczyk, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002). [57] Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express 12, 6184-6191 (2004). [58] E. Gotzinger, M. Pircher, R. Leitgeb, C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583-594 (2005). [59] S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography,” Appl. Opt. 45, 1142-1147 (2006). [60] C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, "Spectroscopic spectral-domain optical coherence microscopy," Opt. Lett. 31, 1079-1081 (2006) [61] Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilber transformation,” Opt. Lett. 27, 98-100 (2002). [62] C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000). [63] X. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, and J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38, 2092-2096 (1999). [64] Y. Wang, M. Backman, G. P. Li, S. Guo, B. J. F. Wang, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30, 53-55 (2005). [65] G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope of optical coherence tomography,” Opt. Lett. 21, 543-545 (1996). [66] A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayyashi, M. V. Sivak, and J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358-1360 (1999). [67] N. V. Iftimia, B. E. Bouma, J. F. de Boer, B. H. Park, B. Cense, and G. J. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Express 12, 4025-4034 (2004). [68] M. Brezinski and J. Fujimoto, “Imaging the cardiovascular system with optical coherence tomography”, Optics & Photonics News 34-35 (2002). [69] B. E. Bouma, G. J. Tearney, I. P. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839-1841 (1996). [70] M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004). [71] Y. Yhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114-116 (2000). [72] Y. Yhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358-1360 (2000). [73] B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, and B. E. Boume, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Opt. Express 11, 3490-3497 (2003).
|