跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴建任
研究生(外文):Chien-Jen Lai
論文名稱:二維非線性光子晶體準相位匹配的研究
論文名稱(外文):Research of Quasi-Phase-Matching in Two-Dimensional Nonlinear Photonic Crystals
指導教授:彭隆瀚
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:33
中文關鍵詞:二維非線性光子晶體準相位匹配二倍頻
外文關鍵詞:2D nonlinear photonic crystalquasi-phase-matchingsecond harmonic generation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討基頻光是高斯光束而非平面波的情況下,利用二維非線性光子晶體及準相位匹配所產生的二倍頻轉換。我們的模擬分析給出了晶體內部,近場以及遠場的二倍頻強度分布。我們也設計了實驗來觀察這些模擬給出的近場強度分布,其結果與理論所預測的相當一致。
Contents

Chapter 1 INTRODUCTION ..................................1

Chapter 2 THEORY ........................................3
2.1 A Comprehensive Approach ............................3
2.2 The Fundamental Equations ...........................4
2.3 Far-Field Approximation .............................5
2.4 Near-Field Calculation ..............................7
2.5 Practical Simplification ............................8
2.6 Some Considerations about Simulation ................9

Chapter 3 SIMULATION ...................................12
3.1 Algorithm .......................................12
3.2 Results .........................................13

Chapter 4 EXPERIMENT ...................................19

Chapter 5 RESULTS ......................................24
5.1 Slit-Scanning ...................................24
5.2 CCD Images ......................................26
5.3 Translation of 2D PPLN ..........................29

Chapter 6 CONCLUSION ...................................30
6.1 Conclusion.......................................30
6.2 Future Work......................................30

Appendix I .............................................31

References .............................................32
References

[1] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, Sep. 1962.
[2] M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron., vol. 28, pp. 2631-2654, Nov. 1992.
[3] Y. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett., vol. 62, pp. 435-436, Nov. 1993.
[4] W. K. Burns, W. McElhanon, and L. Goldberg, “Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3,” IEEE, Photon. Technol. Lett., vol. 6, pp. 252-254, Feb. 1994.
[5] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Amer. B., vol. 12, pp. 2102-2116, Nov. 1995.
[6] L. E. Myers and W. R. Bosenberg, “Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators,” IEEE J. Quantum Electron., vol. 33, pp. 1663-1672, Oct. 1997.
[7] S. M. Saltiel and Y. S. Kivshar, “All-optical deflection and splitting by second-order cascading,” Opt. Lett., vol. 27, pp. 921-923, Jun. 2002.
[8] M. H. Chou, I. Brener, M. M. Fejer, E. E. Chanban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett., vol. 11, pp. 653-655, Jun. 1999.
[9] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberger, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett., vol. 21, pp. 591-593, Apr. 1996.
[10] M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation chirped-period-poled lithium niobate,” Opt. Lett., vol. 22, 1341-1343, Sep. 1997.
[11] N. O’Brien, M. J. Missey, P. E. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett., vol. 24, pp. 1750-1752, Dec. 1999.
[12] P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett., vol. 23, pp. 159-161, Feb. 1998.
[13] H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, N. B. Ming, “Aperiodic optical superlattices engineered for optical frequency conversion,” Appl. Phys. Lett., vol. 79, 728-730, Aug. 2001.
[14] Y. Y. Zhu, S. N. Zhu, N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science, vol. 278, pp. 843-846, Oct. 1997.
[15] K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, “Multiple Nonlinear Optical Interactions with Arbitrary Wave Vector Differences,” Phys. Rev. Lett., vol. 88, pp. 023903-1-023903-4, Jan. 2002.
[16] V. Berger, “Nonlinear Photonic Crystals,” Phys. Rev. Lett., vol. 81, pp. 4136-4139, Nov. 1998.
[17] N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett., vol. 84, pp. 4345-4348, May. 2000.
[18] A. H. Norton and C. M. de Sterke, “Optimal poling of nonlinear photonic crystals for frequency conversion,” Opt. Lett., vol. 28, pp. 188-190, Feb. 2003.
[19] L. H. Peng, C. C. Hsu, J. Ng, and A. H. Kung, “Wavelength tenability of second-harmonic generation from two-dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure,” Appl. Phys. Lett., vol. 84, pp. 3250-3252, Apr. 2004.
[20] R. T. Bratfalean, A. C. Peacock, N.G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett., vol. 30, pp. 424-426, Feb. 2005.
[21] R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett., vol. 95, pp. 133901-1-133901-4, Sep. 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊