跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱美妃
研究生(外文):Mei-Fei Chu
論文名稱:電漿質譜術在西藏南部火成岩岩石成因上的應用
論文名稱(外文):Application of ICP-MS to the study of Transhimalayan petrogenesis
指導教授:鍾孫霖鍾孫霖引用關係
指導教授(外文):Sun-Lin Chung
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:259
中文關鍵詞:電漿質譜術微區西藏鋯石鉿同位素磷灰石拉薩地塊
外文關鍵詞:ICP-MSin situTibetzirconHf isotopeapatiteLhasa terraneTranshimalaya
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著儀器設計以及分析技術的成熟,雷射燒蝕感應耦合電漿質譜術(LA-ICPMS)已被廣泛地應用在地質樣品的微量元素微區(in situ,或原位)分析上;本論文工作即應用此一技術分析藏南拉薩地塊火成岩岩體中的副礦物--鋯石以及磷灰石,它們的原岩包括(一)、分佈於拉薩地塊南緣岡底斯帶中的I型花岡岩質岩,(二)、位居北部火成岩帶、念青唐古喇山地區的S型花岡岩,以及(三)、侵入岡底斯岩基中的(後)碰撞型埃達克岩,並將藉由這兩礦物的微區微量元素或同位素組成,解析拉薩地塊此三大火成活動事件的岩漿成因與演化。
國立臺灣大學地質科學系擁有New Wave LUV213雷射系統以及安捷倫(Agilent)7500s四極桿式感應耦合電漿質譜儀,本論文工作內容亦涵蓋該實驗室與感應耦合電漿質譜術相關分析程序的建立,包括:(一)、建立岩石樣品(含岩石粉末以及四硼酸鋰玻璃樣品)溶液的製備流程與分析方法,(二)、成功聯結雷射系統與質譜儀,完成磷灰石微量元素的微區分析;而藉此,進一步為今日該實驗室中New Wave UP213新雷射系統與同質譜儀對鋯石微區鈾-鉛定年的穩定表現奠下根基。
鋯石的鉿同位素組成,一如全岩的釹同位素可為岩漿源示蹤,但往往還「暗藏」了岩漿演化的諸多細節。統合鋯石的鈾-鉛定年結果與本研究所得的鉿同位素資料,其間揭櫫的藏南火成岩岩石成因可歸結如下:
一、眾多岩樣中岩漿鋯石的鉿同位素值展現可多達近15 ε單位的顯著變化,闡明了岩漿混合事件在這些藏南火成活動中普遍存在;
二、岡底斯岩漿鋯石可高達+19.8的鉿同位素初始值(εHf(T))確切辨證出全岩同位素特徵中「隱匿」的端成分-虧損地函(DM)的存在;
三、除卻普遍所認知的白堊紀、古第三紀岡底斯岩漿事件,本研究自岡底斯岩帶內新確認出另一期早侏羅紀的活動,說明新特提斯洋隱沒的發端至少可遠溯至此時;
四、北部火成岩帶內的S型花岡岩富含188- 210 Ma結晶的繼承鋯石,這些鋯石的鉿同位素值(εHf(T)= -3.9 to -13.7)指示其強烈地殼組份的模式年齡(TDMC)約是1.4- 2.1 Ga,暗示原古代是拉薩地塊地殼的重要増生時期, 而該地殼物質其後於早侏羅紀時發生了重熔事件;
五、漸新世、中新世的埃達克岩,其岩漿鋯石的鉿同位素特徵與白堊紀、古第三紀岡底斯岩漿相似,因而為藏南在印亞碰撞以後,地殼增厚的時間與機制提供了關鍵性的制約;
六、綜觀上述藏南火成岩中的鋯石,它們與時變化的鉿同位素初始值(εHf(T))及其對應的模式年齡(TDMC)記錄了拉薩地塊多階段的造山與地殼形成歷史。
磷灰石的次量與微量元素含量可因其原岩的不同而出現顯著差異。本研究中,電子微探(EPMA)以及雷射燒蝕感應耦合電漿質譜術(LA-ICP-MS)分別被用以量測藏南火成岩中磷灰石的主量與微量元素含量,微區分析的結果顯示,磷灰石的氟(F)、錳(Mn)、鍶(Sr)以及稀土元素(REEs)均與岩漿源成分展現良好的對比關係,揭示了它們應用在岩石成因示蹤上的優秀潛力:其中,磷灰石氟、錳含量的變化與原岩的鋁飽和情形(如:鋁飽和指數ASI)息息相關,因此可以作為岩漿分異程度的指標;而鍶以及稀土元素則在不同岩石類型來源的磷灰石中展現了明顯的豐度變化,因此綜合這些元素將有機會進一步建立岩漿來源的「鑑別圖」,甚而以此討論岩石成因,例如:岩漿混合與源區組成的不均一性。
Recent progress on the development of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) makes precise in-situ measurement of trace element concentrations of accessory minerals in igneous rocks possible and thus the method a powerful tool for studying the complex processes that form and modify the host magmas. In this thesis, focused on the application of LA-ICP-MS to the study of Transhimalayan petrogenesis, in-situ trace element and isotope data of zircon and apatite separates from different types of Transhimalayan rocks in the Lhasa terrane, southern Tibet were carried out. These rocks include: (1) I-type granitoids from the Gangdese batholith cropping out in the southern part of the Lhasa terrane, (2), S-type granitoids from the Nyainqentanglha or northern magmatic belt in the Lhasa terrane, and (3) post-collisional adakites emplaced in the Gangdese belt.
This thesis, furthermore, contributes to the set up of the first LA-ICP-MS system at Department of Geosciences, NTU, composed of a New Wave LUV213 laser and an Agilent 7500s quadruple ICP-MS. The contribution includes: (1) establishment of the routine analytical procedures of rock samples (powder and glass bead) using solution method, (2) successful link the laser with the ICP-MS for in-situ analysis of trace elements in apatites, and (3) collection of knowledge that forms a basis for setting up the new LA-ICP-MS system, attached with a New Wave UP213 laser, at NTU that can perform zircon U-Pb dating as well as in-situ trace element measurements.
ZIRCONS’ Hf isotope ratios can be used in much the same way as whole-rock Nd isotopes. They, furthermore, often record “hidden” information that allows more detailed studies of the magma generation processes. Based on zircon Hf isotope data obtained in this study, together with associated U-Pb ages, the following conclusions regarding Transhimalayan petrogenesis are reached: (1) There are significant variations in Hf isotopes of magmatic zircons, up to ~15 ε-units in some samples, suggesting magma mixing to be a common process; (2) A “hidden” DM (depleted mantle) component, with εHf(T) values up to +19.8, is identified to be prevalent in the Gangdese magmatic zircons. This DM-type component has never been revealed by any whole rock isotope analysis; (3) While the “conventional” Gangdese magmatism has been known as most active in the Cretaceous and Paleogene, this study identifies a new magmatic episode within the Gangdese belt that occurred in Early Jurassic time resulting from the long-lasting Neo-Tethyan subduction; (4) The S-type granitoids of the northern magmatic belt contain abundant inherited zircons aged from ca. 188 to 210 Ma, in which a crustal component that shows εHf(T)= -3.9 to -13.7 and TDMC model ages of ca. 1.4- 2.1 Ga is identified. This implies a major stage of crustal growth in Proterozoic time and remelting of the crustal material in Early Jurassic time; (5) The Oligocene-Miocene adakites contain magmatic zircons that show similar Hf isotope compositions to the Cretaceous-Paleogene Gangdese batholiths, providing a key constraint that allows evaluation of the nature and timing of crustal thickening in southern Tibet owing to the India-Asia collision; and (6) As a whole, the Hf isotope information observed in zircons from the above Transhimalayan rocks demonstrates a temporal variation in εHf(T) values, and thus TDMC ages, that suggests multiple stages of orogenic or crustal formation events.
APATITES from different types of igneous rocks generally reveal significant variations in the abundance level of minor and trace elements. In this study, EPMA and LA-ICP-MS were used to determine the major and trace element concentrations, respectively, of apatites from Transhimalayan granitoids. The results indicate that F, Mn, Sr and REEs in apatites generally show good correlations with compositions of their host magmas and thus have high potential to be utilized as petrogenetic tracers. More specifically, F and Mn contents in apatites are covariant with the aluminosity (or ASI values) of the host rocks so that can be used as an indicator for magma differentiation. Combining with Sr and REE data, which show significant variations in apatites from different rock types, these elements may be furthermore used to construct “discrimination diagrams” for more detailed investigations of complex petrogenetic processes such as magma mixing and compositional heterogeneity.
Abstract 1
Chapter 1. INTRODUCTION 6
1.1 Why LA-ICPMS? 6
1.2 Advantages of LA-ICPMS 7
1.3 Petrogenetic Studies using in situ Analysis of Zircons 7
1.4 Petrogenetic Studies using in situ Analysis of Apatites 9
Chapter 2. GEOLOGIC BACKGROUND 10
Chapter 3. SAMPLES AND ANALYTICAL METHODS 17
3.1 The Samples 17
3.2 WR geochemical analyses of major element and isotopes 17
3.3 ICP-MS set up for WR trace element analyses 18
3.3.1 sample preparation and reagents 18
3.3.2 Instrumentation 22
3.4 Preparation for In Situ Analyses 34
3.4.1 mounting 34
3.4.2 images 35
3.5 In Situ Analyses of Zircon U-Pb Dating 36
3.6 In Situ Analyses of Zircon Hf Isotopes 36
3.7 In Situ Analyses of Apatite Major Elements 38
3.8 In Situ Analyses of Apatite Trace Elements 39
3.8.1 Instrumentation 39
3.8.2 Data acquisition 42
3.8.3 Data reduction 44
3.8.4 Data qualification 44
Chapter 4. ZIRCON IN SITU ANALYSIS 49
4.1 Summary 49
4.2 Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet 51
4.2.1 Introduction 52
4.2.2 Geological background and samples53
4.2.3 Analytical methods55
4.2.4 Analytical results 68
4.2.5 Discussion 70
4.3 The Nature and Timing of Crustal Thickening in Southern Tibet 75
4.3.1 Introduction 76
4.3.2 Background 77
4.3.3 Samples and results 80
4.3.4 Discussion 82
4.3.5 Concluding Remarks 89
4.4 Zircon and Whole-rock Hf Isotope Constraints on the Petrogenesis of the Transhimalayan Plutonic Rocks 90
4.4.1 Introduction 91
4.4.2 Geological background 93
4.4.3 Analytical methods 94
4.4.4 Results 96
4.4.5 Discussion and conclusions 100
4.4.6 Further application to detrital zircon studies 109
Chapter 5. APATITE IN SITU ANALYSIS 110
5.1 Analytical Results and Discussion 110
5.1.1 Fluorine and chlorine 110
5.1.2 Manganese and iron 172
5.1.3 Sulfur 174
5.1.4 Sodium 176
5.1.5 Silicon 177
5.1.6 Strontium 177
5.1.7 Thorium and uranium 182
5.1.8 Rare earth element (REE) abundance 185
5.1.9 Chondrite-normalised REE patterns and ratios 187
5.2 Further Discussion 201
5.2.1 Redox states 201
5.2.2 Magma mixing 205
5.2.3 Provenance discrimination 209
5.3 Summary 214
Reference 216
Appendix Table 228
Appendix Figure 256
Allègre, C. J., and 34 others, 1984, Structure and evolution of the Himalaya-Tibet orogenic belt: Nature, v. 307, p. 17-22.
Amelin, Y., Lee, D.-C. and Halliday, A. N., 2000, Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains: Geochimica et Cosmochimica Acta, v. 64(24), p. 4205-4225.
Bea, F., Pereira, M. D. and Stroh, A., 1994, Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study): Chemical Geology, v. 117, p. 291-312, doi: 10.1016/0009-2541(94)90133-3.
Beaumont, C., Jamieson, R. A., Nguyen, M. H. and Lee, B., 2001, Himalayan tectonics explained by extrusion of a low-viscosity channel coupled to focused surface denudation: Nature, v. 414, p. 738-742.
Belousova, E. A., Walters, S., Griffin, W. L. and O’Reilly, S. Y., 2001, Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland: Australian Journal of Earth Sciences, v. 48, p. 603-619.
Belousova, E.A., Griffin, W. L., O’Reilly, S. Y. and Fisher, N. I., 2002a, Igneous zircon: trace element composition as an indicator of source rock type: Contributions to Mineralogy and Petrology, v. 143, p.602-622, doi: 10.1007/s00410-002-0364-7.
Belousova, E. A., Griffin, W. L., O’Reilly, S. Y. and Fisher, N. I., 2002b, Apatites as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type: Journal of Geochemical Exploration, v. 76, p. 45-69.
Bizzarro, M., Baker, J. A., Haack, H., Ulfbeck, D. and Rosing M., 2003a, Early history of Earth’s crust-mantle system inferred from hafnium isotopes in chondrites: Nature, v. 421, p. 931-933.
Bizzarro, M., Simonetti, A., Stevenson, R. K. and Kurszlaukis, S., 2003b, In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS: Geochimica et Cosmochimica Acta, v. 6(2), p. 289-302.
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. and Foudoulis, C., 2003, TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology: Chemical Geology, v. 200, p. 155-170.
Blichert-Toft, J. and Albarède, F., 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system: Earth and Planetary Science Letters, v. 148, p. 243-258.
Bodet, F. and Schärer, U., 2000, Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers: Geochimica et Cosmochimica Acta, v. 64, p. 2067-2091.
Chang, C., and 26 others, 1986, Preliminary conclusions of the Royal Society and Academia Sinica 1985 Geotraverse of Tibet: Nature, v. 323, p. 501–507.
Chemenda, A. I., Burg, J.-P. and Mattauer, M., 2000, Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modeling, geological and geophysical data: Earth and Planetary Science Letters, v. 174, p. 397-409.
Chen, W.-P. and Yang, Z., 2004, Earthquakes beneath the Himalayas and Tibet: Evidence for strong lithospheric mantle: Science, v. 304, p. 1949-1952.
Chung, S.-L., Chu, M.-F., Zhang, Y., Xie, Y., Lo, C.-H., Lee, T.-Y., Lan, C.-Y., Li, X., Zhang, Q., and Wang, Y., 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism: Earth-Science Reviews, v. 68, p. 173-196, doi: 10.1016/j.earscirev.2004.05.001.
Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Lee, T.-Y., Qian, Q. and Zhang, Q., 2003, Adakites from continental collision zone: Melting of thickened lower crust beneath southern Tibet: Geology, v. 31(11), p. 1021-1024.
Chung, S.-L. et al., Collision-type adakites in southern Tibet: Ages, geochemical characteristics, petrogenesis and geodynamic significance (in preparation).
Coulon, C., Maluski, H., Bollinger, C. and Wang, S., 1986, Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 40Ar/39Ar dating, petrological characteristics and geodynamic implications: Earth and Planetary Science Letters, v. 79, p. 281-302, doi: 10.1016/0012-821X(86)90186-X.
Debon, F., Le Fort, P., Sheppard, S. M. F., and Sonet, J., 1986, The four plutonic belts of the trans-Himalaya: A chemical, mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section: Journal of Petrology, v. 27, p. 219-250.
DeCelles, P. G., Robinson, D. M. and Zandt, G., 2002, Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan plateau: Tectonics, v. 21, 1062, doi:10.1029/2001TC001322.
Defant, M. J. and Drummond, M. S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, v. 347, p. 662-666.
Ducea, M. N., 2001, The California arc: Thick granitic batholiths, eclogitic residues, lithosphere-scale thrusting, and magmatic flare-ups: GSA Today, v. 11, p. 4-10.
Dulski, P., 2001, Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values: Geostandards Newsletter, v. 25, p. 87-125.
Eggins, S. M. and Shelley, J. M. G., 2002, Compositional heterogeneity in NIST SRM 610-617 Glasses: Geostandards Newsletter, v. 26(3), p.269-286.
Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M. and Handler, M. R., 1997, A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardization: Chemical Geology, v. 134, p. 311-326.
England, P. C. and Houseman, G. A., 1985, Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions: Nature, v. 315, p. 297-301.
Fujimaki, H., 1986, Partition-coefficients of Hf, Zr, and REE between zircon, apatite, and liquid: Contributions to Mineralogy and Petrology, v. 94(1), p.42-45.
Fujimaki, H., Tatsumoto, M. and Aoki, K., 1984, Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses: Journal of Geophysical Research, v. 89, p. 662-672.
Govindaraju, K., 1994, 1Compilation of working values and sample description for 383 geostandards: Geostandards Newsletter, v. 18(special issue), p. 1-158.
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O’Reilly, S. Y. and Shee, S. R., 2000, The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites: Geochimica et Cosmochimica Acta, v. 64, p. 133-147.
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O’Reilly, S. Y, Xu, X. and Zhou, X., 2002, Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes: Lithos, v. 61, p. 237-269.
Guillong, M., Horn, I. and Günther, D., 2003, A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS: Journal of Analytical Atomic Spectrometry, v. 18, p.1224-1230, doi: 10.1039/b305434a.
Günther, D., Jackson, S. E. and Longerich, H. P., 1999, Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers: Spectrochimica Acta (Part B), v. 54, p. 381-409.
Haines, S. S., Klemperer, S. L., Brown, L., Guo, J., Mechie, J., Meissner, R., Ross, A. and Zhao, W., 2003, INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet: Tectonics, v. 22(1), 1001, doi:10.1029/2001TC001305.
Hanyu, T. and Tatsumi, Y., 2002, A contribution of slab-melts to the formation of high-Mg andesite magmas; Hf isotopic evidence from SW Japan: Geophysical Research Letters, v. 29, p. 2051-2054, doi: 10.1029/2002GL015856.
Harris, N. B. W., Inger, S., and Xu, R., 1990, Cretaceous plutonism in Central Tibet: An example of post-collision magmatism? Journal of Volcanology and Geothermal Research, v. 44, p. 21-32, doi: 10.1016/0377-0273(90)90009-5.
Harrison, H. M., Yin, A., Grove, M. and Lovera, O. M., 2000, The Zedong window: A record of superposed Tertiary convergence in southeastern Tibet: Journal of Geophysical Research, v. 105(B8), p. 19211-19230.
Haschke, M., Siebel, W., Günther, A. and Scheuber, E., 2002, Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21˚ - 26˚S): Journal of Geophysical Research, v. 107(B1), 2019, doi:10.1029/2001JB000328.
Hildreth, W. and Moorbath, S., 1988, Crustal contributions to arc magmatism in the Andes of central Chile: Contributions to Mineralogy and Petrology, v. 98, p. 455-489.
Hodges, K. V., 2000, Tectonics of the Himalaya and southern Tibet from two perspectives: Geological Society of America Bulletin, v. 112(3), p. 324– 350
Hodges, K. V., Hurtado, J. M. and Whipple, K. X., 2001, Southward extrusion of Tibetan crust and its effect on Himalayan tectonics: Tectonics, v. 20, p. 799-809.
Horn, I., Hinton, R. W., Jackson, S. E. and Longerich, H. P., 1997, Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS): A comparison with secondary ion mass spectrometry (SIMS): Geostandards Newsletter, v. 21, p. 191-203.
Hoskin, P. W. O., and Black, L. P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon: Journal of Metamorphic Geology, v. 18, p. 423-439, doi: 10.1046/j.1525-1314.2000.00266.x.
Hoskin, P. W. O., Kinny, P. D., Wyborn, D. and Chappell, B. W., 2000, Identifying accessory mineral saturation during differentiation in granitoids magmas: an integrated approach: Journal of Petrology, v. 41(9), p. 1365-1396.
Hoskin, P. W. O. and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: In Reviews in Mineralogy and Geochemistry, v. 53 (Zircon), edited by J. M. Hanchar and P. W. O. Hoskin, p. 27-62, Mineralogical Society of America (MSA), Washington, D. C., U. S. A.
Hou, Z.-Q., Gao, Y.-F., Qu, X.-M., Rui, Z.-Y. and Mo, X.-X., 2004, Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet: Earth and Planetary Science Letters, v. 220, p. 139-155.
Houseman, G. A. and Molnar, P., 1997, Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convergence thinning of continental lithosphere: Geophysical Journal International, v. 128, p. 125-150.
Iizuka, T., Hirata, T., Komiya, T., Rino, S., Katayama, I., Motoki, A. and Maruyama, S., 2005, U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust: Geology, v. 33(6), p. 485-488, doi: 10.1130/G21427.1.
Ila, P. and Frey, F. A., 2000, Trace element analysis of USGS standards AGV2, BCR2, BHVO2, DTS2 and GSP2 by INAA: Journal of Radioanalytical and Nuclear Chemistry, v. 244(3), p. 599-602.
Imai, N., Terashima, S., Itoh, S. and Ando, A., 1995, 1994 compilation values for GSJ reference samples, “Igneous rock series”: Geochemical Journal, v. 29, p. 91-95.
Jackson, J. A., 2002, Strength of the continental lithosphere: Time to abandon the jelly sandwich? GSA Today, v. 12(9), p. 4-10.
Jackson, J. A., Austrheim, H., McKenzie, D. and Priestley, K., 2004a, Metastability, mechanical strength, and the support of mountain belts: Geology, v. 32, p. 625-628.
Jackson, S. E., 2001, The application of Nd:YAG lasers in LA-ICP-MS: In Principles and Applications of Laser Ablation ICP-Mass Spectrometry in the Earth Sciences, Short course series v. 29, edited by P. Sylvester, p. 29-45, Mineralogical Association of Canada (MAC), Canada.
Jackson, S. E., Pearson, N. J., Griffin, W. L. and Belousova, E. A., 2004b, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology: Chemical Geology, v. 211, p. 47–69, doi:10.1016/j.chemgeo.2004.06.017.
Jamieson, R. A., Beaumont, C., Medvedev, S. and Nguyen, M. H., 2004, Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen: Journal of Geophysical Research, v. 109, B06407, doi:10.1029/2003JB002811.
Jeffries, T. E., Jackson, S. E. and Longerich, H. P., 1998, Application of a frequency quintupled Nd:YAG source (λ = 213 nm) for laser ablation ICP-MS analysis of minerals: Journal of Analytical Atomic Spectrometry, v. 13, p.935-940.
Jenner, G. A., Longerich , H. P., Jackson, S. E. and Fryer, B. J., 1990, ICPMS – A powerful tool for high-precision trace-element analysis in Earth sciences: Evidence from analysis of selected U.S.G.S. reference samples: Chemical Geology, v. 83, p. 133-148.
Kane, J. S., 1998, A history of the development and certification of NIST glass SRMs 610-617: Geostandards Newsletter, v. 22, p. 7-13.
Kapp, J. L. D., Harrison, T. M., Kapp, P., Grove, M., Lovera, O. M. and Lin, D., 2005a, Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet: Journal of Geophysical Research, v. 110, p. B08413, doi: 10.1029/2004JB003330.
Kapp, P., Yin, A., Harrison, T. M., and Ding, L., 2005b, Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet: Geological Society of America Bulletin, v. 117, p. 865-878, doi: 10.1130/B25595.1.
Larsen, L. M., 1979, Distribution of REE and other trace-elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar Igneous Province, south Greenland: Lithos, v. 12(4), p. 303-315, doi: 10.1016/0024-4937(79)90022-7.
Lee, H.-Y., Chung, S.-L., Wen, D.-J., Lo, C.-H., Ji, J., Qian, Q. and Lee, T.-Y., 2004, New age and geochemical constraints for the origin of the Linzizong volcanic successions, southern Tibet: Eos Trans. AGU, v. 85, Abstract WP164.
Lee, T.-Y. and Lawver, L. A., 1995, Cenozoic plate reconstruction of Southeast Asia: Tectonophysics, v. 251, p. 85-138
Li, X.-H., Qi, C.-S., Liu, Y., Liang, X.-R., Tu, Z.-L., Xie, L.-W. and Yang, Y.H., 2005, Rapid separation of Hf from rock samples for isotope analysis by MC-ICPMS: A modified single-column extraction chromatography method: Geochimica, v. 34, p. 109-114 (in Chinese with English abstract).
Liang, Y.-H., Chung, S.-L., Liu, D., O’Reilly, S. Y., Chu, M.-F., Ji, J., Song, B. and Pearson, N. J., 2004, Detrital zircon study along the Tsangpo River, SE Tibet: Eos Trans. AGU, v. 85(47), Fall Meeting Abstract T53A–0466.
Liu Y., Liu, H. and Li, X., 1996, Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS: Geochimica, v. 25(6), p.552-558 (in Chinese with English abstract).
Luhr, J. F., Carmichael, I. S. E. and Varekamp, J. C., 1984, The 1982 eruptions of El Chichon volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices: Journal of Volcanology and Geothermal Research, v. 23, p. 69-108, doi: 10.1016/0377-0273(84)90057-X.
Mahood, G. A. and Stimac, J. A., 1990, Trace-element partitioning in pantellerites and trachytes: Geochimica et Cosmochimica Acta, v. 54, p. 2257-2276, doi: 10.1016/0016-7037(90)90050-U.
Munker, C., 1998, Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS techniques: Chemical Geology, v. 144, p. 23-45.
Murphy, M. A., Yin, A., Harrison, T. M., Dürr, S.B., Chen, Z., Ryerson, F. J., Kidd, W. S. F., Wang, X. and Zhou X., 1997, Did the Indo-Asian collision alone create the Tibetan plateau? Geology, v. 25, p. 719-722.
Nagasawa, H., 1970, Rare earth concentrations in zircon and apatite and their host dacite and granites: Earth and Planetary Science Letters, v. 9, p. 359-364, doi: 10.1016/0012-821X(70)90136-6.
Nagasawa, H. and Schnetzler, C. C., 1971, Partitioning of rare earth, alkali, and alkaline earth elements between phenocrysts and acidic igneous magmas: Geochimica et Cosmochimica Acta, v. 35, p. 953-968, doi: 10.1016/0016-7037(71)90008-1.
Norman, M. D., Griffin, W. D., Pearson, N. J., Garciac, M. O. and O’Reilly, S. Y., 1998, Quantitative analysis of trace element abundances in glasses and minerals: A comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry , proton microprobe and electron microprobe data: Journal of Analytical Atomic Spectrometry, v. 13, p. 477-482.
Norman, M. D., Pearson, N. J., Sharma, A. and Griffin, W. L., 1996, Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses: Geostandard Newsletters, v. 20, p. 247-261.
Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J. and Taylor, R. N., 1998, High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: insights into the depleted mantle: Chemical Geology, v. 149, p. 211-233.
Owens, T. and Zandt, G., 1997, Implications of crustal property variations for models of Tibetan plateau evolution: Nature, v. 387, p. 37-43.
Pan, G., Ding, J., Yao, D., and Wang, L. (Chief Compilers), 2004, Guide book of 1:1,500,000 geologic map of the Qinghai-Xizang (Tibet) plateau and adjacent areas: Chengdu Cartographic Publishing House, 48p.
Paster, T. P., Schauwecker, D. S. and Haskin, L. A, 1974, The behavior of some trace elements during solidification of the Skaergaard layered series: Geochimica et Cosmochimica Acta, v. 38(10), p. 1549-1577, doi: 10.1016/0016-7037(74)90174-4.
Patchett, P. J., Kouvo, O. Hedge, C. E. and Tatsumoto, M., 1981, Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes: Contributions to Mineralogy and Petrology, v. 78, p. 279-297.
Pearce, J. A., Kempton, P. D., Nowell, G. M. and Noble, S. R., 1999, Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems: Journal of Petrology, v. 40, p. 1579-1611.
Pearce, J. A. and Mei, H., 1988, Volcanic rocks of the 1985 Tibet Geotraverse: Lhasa to Golmud: Philosophical Transactions of the Royal Society of London: Series A, v. 327, p. 169-201.
Potts, P. J., Thompson, M. and Wilson, S., 2002, G-Probe-1 – An international proficiency test for microprobe laboratories – Report on round 1: February 2002 (TB-1 basaltic glass): Geostandards Newsletter, v. 26(2), p. 197-235.
Raczek, I., Stoll, B., Hofmann, A. W. and Jochum, K. P., 2001, High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS: Geostandards Newsletter, v. 25(1), p. 77-86.
Saleeby, J., Ducea, M. and Clemens-Knott, D., 2003, Production and loss of high-density batholithic root, southern Sierra Nevada, California: Tectonics, v. 22(6), 1064, doi:10.1029/2002TC001374.
Sano, Y., Oyama, T., Terada, K. and Hidaka, H., 1999, Ion microprobe U–Pb dating of apatite: Chemical Geology, v. 153, p. 249-258.
Scherer, E. E., Cameron, K. L., Johnson, C. M., Beard, B. L., Barovich, K. M. and Collerson, K. D., 1997, Lu-Hf geochronology applied to dating Cenozoic events affecting lower crustal xenoliths from Kilbourne Hole, New Mexico: Chemical Geology, v. 142, p. 63-78.
Scherer, E., Munker, C. and Merzger, K., 2001, Calibration of the lutetium-hafnium clock: Science, v. 293, p. 683-687.
Schmitz, M. D., Vervoort, J. D., Bowring, S. A. and Patchett, P. J., 2004, Decoupling of the Lu-Hf and Sm-Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa: Geology, v. 32, p. 405-408, doi: 10.1130/G20241.1
Searle, M. P., Simpson, R. L., Law, R. D., Parrish, R. R. and Waters, D. J., 2003, The structure geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet: Journal of the Geological Society, v. 160(3), p. 345-366.
Sha, L.-K. and Chappell, B. W., 1999, Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis: Geochimica et Cosmochimica Acta, v. 63(22), p. 3861-3881.
Song, B., Zhang, Y., Wan, Y. and Jian, P., 2002, Mount making and procedure of the SHRIMP dating: Geological Review, v. 48 Supp., p. 26-30 (in Chinese with English abstract).
Spicer, R. A., Harris, N. B. W., Widdowson, M., Herman, A. B., Guo, S., Valdes, P. J., Wolfe, J. A. and Kelley, S. P., 2003, Constant elevation of southern Tibet over the past 15 million years: Nature, v. 421, p. 622-624, doi: 10.1038/nature01356.
Taylor, S. R. and McLennan, S. M., 1985: The continental crust: Its composition and evolution, 312 pp., Blackwell Scientific Publications, Oxford.
Thompson, A. B., Schulmann K., Jezek, J. and Tolar, V., 2001, Thermally softened continental extensional zones (arcs and rifts) as precursors to thickened orogenic belts: Tectonophysics, v. 332, p. 115-141.
Tsuboi, M. and Suzuki, K., 2003, Heterogeneity of initial 87Sr/86Sr ratios within a single pluton: evidence from apatite strontium isotopic study: Chemical Geology, v. 199, p.189-197.
Van Achterbergh, E., Ryan, C. G., Jackson, S. E., Griffin, W. L., 2001, Data reduction software for LA-ICP-MS: appendix: In Principles and Applications of Laser Ablation ICP-Mass Spectrometry in the Earth Sciences, Short course series v. 29, edited by P. Sylvester, p. 239-243, Mineralogical Association of Canada (MAC), Canada.
Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. and Albarède, F., 1999, Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system: Earth and Planetary Science Letters, v. 168, p. 79-99.
Wang, K.-L., Chung, S.-L., O’Reilly, S. Y., Sun, S.-S., Shinjo, R. and Chen, C.-H., 2004, Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan range: Journal of Petrology, v. 45(5), p. 975-1011, doi: 10.1093/petrology/egh001.
Watson, E. B. and Green, T. H., 1981, Apatite/liquid partition coefficients for the rare earth elements and strontium: Earth and Planetary Science Letters, v. 56, p. 405-421, doi: 10.1016/0012-821X(81)90144-8.
Wen, D.-J., Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Song, B., Lo, C.-H. and Lee, T.-Y., 2003, New SHRIMP U–Pb zircon ages from the Gangdese batholith and implications for the trans-Himalayan magmatic evolution: EGS-AGU-EUG Joint Meeting Abstract Volume, p. 494.
Wen, D.-J., Chung, S.-L., Song, B., Ji, J., Liu, D., Qian, Q., Chu, M.-F., and Lo, C.-H., 2005, The Gangdese Batholith: Ages, geochemical characteristics and geodynamic implications: Abstract Volume of the Petrology and Geodynamics Conference, Hangzhou, China, p. 339.
Williams, I. S., 1998, U-Th-Pb geochronology by ion microprobe: In Reviews in Economic Geology, v. 7, edited by, M. A. McKibben, W. C. Shanks, W. I. Ridley, p. 1-35, the Society of Economic Geologists, Inc., U. S. A.
Willigers, B. J. A., Baker, J. A., Krogstad, E. J. and Peate, D. W., 2002, Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS: Geochimica et Cosmochimica Acta, v. 66(6), p. 1051-1066.
Wilson, S. A., 1998, Data compilation and statistical analysis of intralaboratory results for AGV-2: U.S. Geological Survey Open-File Report (in progress).
Wilson, S. A., 1997a, The collection, preparation, and testing of USGS reference material BCR-2, Columbia River, Basalt: U.S. Geological Survey Open-File Report 98-00x.
Wilson, S. A., 1997b, Data compilation for USGS reference material BHVO-2, Hawaiian Basalt: U.S. Geological Survey Open-File Report xxxxx.
Wright, T. J., Parsons, B., England, P. C. and Fielding, E. J., 2004, InSAR observations of low slip rates on the major faults of western Tibet: Science, v. 305, p. 236-239.
Xu, P., Wu, F., Xie, L. and Yang, Y., 2004, Hf isotopic compositions of the standard zircons for U-Pb dating: Chinese Science Bulletin, v. 49(15), p. 1642-1648.
Xu, R., Scharer, U., and Allègre, C. J., 1985, Magmatism and metamorphism in the Lhasa Block (Tibet): a geochronological study: The Journal of Geology, v. 93, p. 41–57.
Yin, A., and Harrison, T. M., 2000, Geologic evolution of the Himalayan-Tibetan orogen: Annual Review of Earth and Planetary Sciences, v. 28, p. 211-280, doi: 10.1146/annurev.earth.28.1.211.
Yin, J., and Grant-Mackie, J. A., 2005, Late Triassic-Jurassic bivalves from volcanic sediments of the Lhasa block, Tibet: New Zealand Journal of Geology and Geophysics, v. 48, p. 555-576.
Yurimoto, H., Duke, E. F., Papike, J. J. and Shearer, C. K., 1990, Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation? Geochimica et Cosmochimica Acta, v. 54, p. 2141-2145.
Zandt, G., Gilbert, H., Owens, T. J., Ducea, M., Saleeby, J. and Jones, C. H., 2004, Active foundering of a continental arc root beneath the southern Sierra Nevada in California: Nature, v. 431, p. 41-46.
Zhang, H., Harris, N., Parrish, R., Kelley, S., Zhang, L., Rogers, N., Argles, T. and King, J., 2004a, Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform: Earth and Planetary Science Letters, v. 228, p. 195-212.
Zhang, K.-J., Xia, B.-D., Wang, G.-M., Li, Y.-T. and Ye, H.-F., 2004b, Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet: Geological Society of America Bulletin, v. 116, p. 1202–1222, doi: 10.1130/B25388.1.
Zhang, P.-Z., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Sun, H. and You, X., 2004c, Continuous deformation of the Tibetan Plateau from global positioning system data: Geology, v. 32(9), p. 809-812.
Zhao, W. L., and Morgan, W. J., 1987, Injection of Indian crust into Tibetan lower crust: A two-dimensional finite element model study: Tectonics, v. 6, p. 489-504.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top