跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃楷庭
研究生(外文):Kai-Ting Huang
論文名稱:次波長微結構在表面電漿元件及太陽能電池應用之研究
論文名稱(外文):Study of Subwavelength Microstructures for Surface Plasmon Devices and Solar Cells
指導教授:陳學禮陳學禮引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:161
中文關鍵詞:表面電漿太陽能電池
外文關鍵詞:surface plasmonsolar cell
相關次數:
  • 被引用被引用:8
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本論文中,我們成功的利用半導體製程製作具表面電漿效應的試片,藉著改變結構尺寸及二維週期性的圖案,研究高折射率材料上特別的光學特性。在結構上,我們改變折射率匹配層二氧化矽的厚度,以及改變鋁金屬膜的厚度,欲找到一最佳的條件,讓表面電漿引發的高穿透強度達到最大,且最有效率。在二維週期性圖案上,我們發現: (1) 橢圓陣列具有偏光效果,隨著橢圓單元的旋轉,欲引發一強的表面電漿效應,入射光之極化方向須恆垂直橢圓的長軸方向; (2) 雙孔陣列,由於圖形排列的關係,可看成兩種模態之表面電漿共振,其一為光柵的共振,出現在長波長波峰,另一為雙孔之隅合共振,出現在短波長波峰; (3) C型陣列具有較傳統孔洞陣列強的穿透強度,其並具有圖形的方向性,使表面電漿在S偏振光入射較容易被引發; (4) 卍字形陣列具有一旋光的特性,可使入射光之極化方向旋轉,若光同時經過兩相同試片,可得到一更大的旋轉角度,高達8.5度。表面電漿異常高的穿透現象可運用在增加太陽能池電或光偵測元件的收光效率,在本論文最後,我們提供了另一簡單、有效率的方式,即利用I-line光源配合OAI技術製作次波長結構之太陽能抗反射層的概念,來增加太陽能池電或光偵測元件的收光效率。
In this thesis, we have investigated the special optical properties of two-dimensional periodically structures on semiconductor substrates. For study the surface plasmon polaritons and surface reflection phenomena, the sub-wavelength structures with various period and shape were fabricated by conventional semiconductor processes. In this study, we found the optimal parameters to induce strong surface plasmon polaritons phenomena by changing the thickness of the dielectric and metal layers. By varying the shape of two-dimensional periodically structures, we found that (1) the ellipse array containing polarization effects and linear polarization of the incident light always perpendicular to the long axis of the ellipse induced highest transmission. (2) the double-hole array comprised grating mode occurring at long wavelength regime and resonance of double-hole mode occurring at short wavelength regime according to their arrangement. (3) the C-shape induced extra high transmission, and s-polarized light could induce strong surface plasmon polaritons phenomena. (4) the chiral structure possessed optical activity, and linear polarized light was rotated 8.5° by passing through two chiral structure plates.
We proposed to enhance the efficiency of the solar cells and photo detectors by utilizing surface plasmon polaritons phenomena caused high transmission on metal structures. For enhance the external quantum efficiency of solar cells, we also fabricated the sub-wavelength antireflective pyramid structures on silicon substrates by utilizing an I-line stepper with off axis illumination (OAI) technology.
摘要I
AbstractII
致謝III
目錄V
表目錄X
圖目錄XI
第一章 緒論 1
1.1前言 1
1.2論文架構 3
第二章 文獻回顧 5
2.1表面電漿現象 5
2.1.1異常穿透現象 5
2.1.2折射率匹配現象 11
2.1.3表面電漿的色散曲線及公式推導 12
2.1.3.1色散關係 12
2.1.3.2以光學方式激發表面電漿波 15
2.1.3.3光柵耦合 15
2.1.3.4金屬膜上二維週期結構激發表面電漿 16
2.2利用不同週期性圖形製作具表面電漿效應之光學元件 18
2.2.1橢圓形及雙孔洞週期性結構: 18
2.2.2 C形週期性結構 22
2.2.3卍字形週期性結構 26
2.3太陽能電池的抗反射結構 32
第三章 利用半導體製程製作具表面電漿效應之光學元件 38
3.1實驗動機與目的 38
3.2實驗藥品設備 39
3.2.1實驗基材與藥品 39
3.2.2實驗設備 39
3.2.2.1試片製作 39
3.2.2.2試片分析 40
3.3實驗流程圖 41
3.4實驗步驟 42
3.5實驗結果與討論 43
3.5.1表面電漿共振及Fabry-perot對異常穿透的關係 43
3.5.2不同鋁膜厚度對表面電漿現象的影響 53
3.5.3討論橢圓陣列 60
3.5.3.1橢圖陣列的結構及SEM 60
3.5.3.2橢圓陣列的穿透圖譜 62
3.5.3.3橢圓陣列的偏光效果 63
3.5.4討論雙孔陣列 67
3.5.4.1雙孔陣列的結構及SEM 67
3.5.4.2雙孔陣列的穿透圖譜 69
3.5.4.3雙孔陣列的偏光效果 70
3.5.5討論C型陣列 75
3.5.5.1 C型陣列的結構及SEM 75
3.5.5.2 C型陣列的穿透圖譜 79
3.5.5.3 C型陣列穿透圖譜的歸一化 82
3.5.5.4 C型陣列的偏光效果 85
第四章 卍字形的旋光性質討論 88
4.1實驗動機與目的 88
4.2實驗藥品與設備 88
4.3實驗流程圖 89
4.4實驗步驟 90
4.5結果與討論 91
4.5.1卍字型陣列結構及SEM 91
4.5.2卍字型陣列的穿透圖譜 94
4.5.3光學活性的量測方法 96
4.5.4卍字型圖案的旋光性討論 98
第五章 利用離焦及離軸照射技術製作次波長結構之太陽能抗反射層 113
5.1實驗動機與目的 113
5.2實驗藥品與設備 117
5.2.1實驗基材與藥品 117
5.2.2實驗設備 117
5.2.2.1試片製作之設備 117
5.2.2.2試片分析之設備 118
5.3實驗流程圖 119
5.4實驗步驟: 120
5.5結果與討論 121
5.5.1模擬及實驗架構 121
5.5.2模擬不同曝光參數對製作次波長金字塔型結構的影響 125
5.5.3說明何時該使用離焦之技術 138
5.5.4實做出具金字塔型之抗反射層結構(結構週期700 nm、線寬 400 nm) 145
第六章 結論 153
6.1結論 153
6.2未來工作 155
Reference 156
1.R. H. Ritchie, Phys. Rev. 106, 874 (1957).
2.H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988).
3.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
4.H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
5.H. Bethe, Phys. Rev. 66, 163 (1944).
6.C.-C. Chen, IEEE Trans. Microwave Theory Tech. 18, 627(1970).
7.T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and, H. J. Lezec, Opt. Lett. 24, 256 (1999).
8.T. Thio, H. F. Ghaemi, H. J. Lezec,; P. A. Wolff, T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999).
9.D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl. Phys. Lett. 77, 1569 (2000).
10.A. Krishnan, T. Thio, T. Kim, J. H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001).
11.L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen Phys. Rev. Lett. 86, 1114 (2001).
12.A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, H. J. Lezec Opt. Lett. 26, 450 (2001).
13.S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park., Appl. Phys. Lett. 81, 3239 (2002).
14.A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002).
15.E. Altewischer, M. P. van Exter,and J. P. Woedrman, Nature (London) 418, 304 (2002)..
16.Eloise Devaux, T. W. Ebbesen, Jean-Claude Weeber, and Alain Dereux, Appl. Phys. Lett. 83, 4936 (2003).
17.D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, Phys. Rev. Lett. 91, 143901 (2003).
18.R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).
19.W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
20.B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy, J. Opt. Soc. Am. A 19, 1352 (2002).
21.J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, Phys. Rev. B 68, 201306 (2003).
22.Ahmer Naweed, Frank Baumann, William A. Bailey, Jr., Aram S. Karakashian, and William D. Goodhue, J. Opt. Soc. Am. B 20, 2534 (2003).
23.Dongxia Qu, D. Grischkowsky, and Weili Zhang, Opt. Lett. 29, 896 (2004).
24.H. Cao and A. Nahata, Opt. Express 12, 1004 (2004).
25.E. Popov, M. Nevière, S. Enoch, and R. Reinisch, Phys. Rev. B 62, 16100 (2000).
26.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
27.S. A. Darmanyan and A. V. Zayats, Phys. Rev. B 67, 035424 (2003).
28.Roland Müller, Viktor Malyarchuk, and Christoph Lienau Phys. Rev. B 68, 205415 (2003).
29.A. M. Dykhne, Andrey K. Sarychev, and Vladimir M. Shalaev Phys. Rev. B 67, 195402 (2003).
30.K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
31.Jill Elliott, Igor I. Smolyaninov, Opt. Lett. 29, 1414 (2004).
32.L. Salomon, F. Grillot, A. Zayats, and F. De Fornel, Phys. Rev. Lett. 86, 1110 (2001).
33.U. Schroter and D. Heitmann, Phys. Rev. B 58, 15,419 (1998).
34.L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
35.J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845 (1999).
36.Werayut Srituravanich, Nicholas Fang, Cheng Sun, Qi Luo, and Xiang Zhang, Nano lett. 4, 1085 (2004).
37.Xiangang Luo and Teruya Ishihara, Appl. Phys. Lett. 84, 4780 (2004); Opt. Express 12, 3055 (2004).
38.B. Hecht, H. Bielefeldt, L.Novotny, Y. Inouye, and D. W. Pohl, Phys. Rev. Lett. 77, 1889 (1996).
39.J. C. Weeber, et al. Phys. Rev. Lett. 77, 5332 (1996).
40.W. H. Weber, and C. F. Eagen, Opt. Lett. 4, 236 (1979).
41.I. Pockrand, A.Brillante, and D. Möbius, Chem. Phys. Lett. 69, 499 (1980).
42.W. L. Barnes, J. Mod. Opt. 45, 661 (1998).
43.P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mat. 14, 1393 (2002).
44.S. Wedge, J. A. E. Wasey, and W. L. Barnes, and I. Sage, Appl. Phys. Lett. 85, 182 (2004).
45.Stephen Wedge and W. L. Barnes, Opt. Express 12, 3673 (2004).
46.C. Nylander, B. Liedberg, and T. Lind, Sens. Actuators 3, 79 (1982-1983).
47.K. Matsubara, S. Kawata, and S. Minami, Appl. Opt. 27, 1160 (1998).
48.H. Kano and S. Kawata, Jpn. J. Appl. Phys. 1, 34, 331 (1995).
49.F. J. Garcia-Vidal and L. Martin-Moreno, Appl. Phys. Lett. 83, 4500 (2003).
50.F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, T. W. Ebbesen, Phys. Rev. B. 66, 155412 (2002).
51.M. M. J. Treacy, Appl. Phys. Lett. 75, 5, 606 (1999).
52.M. M. J. Treacy, Phys. Rev. B 66, 195105 (2002).
53.M. Sarrazin, J. P. Vineron, Phys. Rev. E, 68, 016603 (2003).
54.M. Sarrazin, J.-P. Vigneron and J.-M. Vigoureux, Phys. Rev. B 67, 085415 (2003).
55.R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo, Nano Lett., 5, 1243(2005).
56.C. Rockstuhl and H. P. Herz, Opt. Lett. 29, 2181 (2004)
57.J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and N. I. Zheludev Opt. Lett. 77, 1414 (2004)
58.W. Jiaa and X. Liu, Eur. Phys. J. B 46, 343–347 (2005)
59.X. Shi, L. Hesselink ,and R. L. Thornton, Opt. Lett. 28, 1320 (2003)
60.J. A. Matteo, and L. Hesselink, Optics Express, 13, 636 (2005)
61.J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, Appl. Phys. Lett. 85, 648(2004)
62.A. Papakostas,1,2 A. Potts,1,2 D.M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, Phys. Rev. Lett. 90, 107404 (2003)
63.A. S. Schwanecke,1 A. Krasavin,1 D.M. Bagnall, A. Potts, A.V. Zayats, and N. I. Zheludev, Phys. Rev. Lett. 91, 247404-1 (2003)
64.A. Potts, A. Papakostas, D.M. Bagnall, N.I. Zheludev, Microelectronic Engineering 73-74, 367 (2004)
65.Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, N. I. Zheludev, Microelectronic Engineering 78–79, 612 (2005)
66.K. Jefimovs, N. Saito, Yu. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kauranen, Yu. Svirko, and M. Kuwata-Gonokami, Microelectronic Engineering 78–79, 448 (2005)
67.R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett 92, 037401 (2004)
68.A. K. Azad, Y. Zhao, and W. Zhanga, Appl. Phys. Lett. 86, 141102 (2005)
69.K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004)
70.G. A. Valaskovic, M. Holton, and G. H. Morrison, Appl.Opt. 34, 1215 (1995)
71.D. Zeisel, S. Nettesheim, B. Dutoit, and R. Zenobi, Appl. Phys. Lett. 68, 2491 (1996)
72.L. R. Arnaut, J. Electromagn. Waves Appl. 11, 1459(1997)
73.P. LeGuennec, J. Math. Phys. (N.Y.) 41, 5954 (2000)
74.S. W. Park, J. Kim, S. H. Lee, J. Korean Phys. Soc. 43, 423 (2003)
75.羅光旭, “太陽能電池技術現況與展望”, 經濟部能委會
76.B.M. Damiani, R. Ludemann, D.S. Ruby, S.H. Zaidi, A. Rohatgi, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA 30332-0250
77.P. Campbell, J. Opt. Soc. Am. B, 10, No. 12 (1993)
78.趙健皓,次波長金屬微結構之表面電漿特性與應用之研究,國立台灣大學材料工程所碩士論文 (2005)
79.A. K. Azad and W. Zhang, Opt. Lett. 30,2945 (2005)
80.徐啟明,以光阻製程技術研製太陽能電池抗反射結構及聚合物光波導,國立中華大學光電所碩士論文 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊