跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張智寬
研究生(外文):Chih-Kuang Chang
論文名稱:焚化爐灰渣電漿熔煉製成發泡陶瓷研究
論文名稱(外文):Study of plasma remelting the slag of the incinerator
指導教授:連雙喜
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:119
中文關鍵詞:電漿發泡陶瓷灰渣
外文關鍵詞:plasmaprous ceramicsslag
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
焚化爐,煉鋼廠等產生之大量灰渣,多為金屬氧化物如氧化鋁,二氧化矽,氧化鈣等; 如將其棄置,會造成環保的問題,如能回收利用,並創造出高的附加價值的產品,則為一舉兩得的解決辦法。
而灰渣原料之組成與常見的耐火材料相似,絕熱性好,不易與金屬產生高溫化學反應,為良好的抗高溫腐蝕的材料。
由建築材料方面看,此種原料較便宜,耐溫度高,如為泡沫或多孔質之爐渣其隔音效果更好且輕,如應用為室內裝潢用的材料,具有耐高溫,隔音,阻絕化學物質的功能。萬一火災發生時,可以拉長逃命的緊迫時間,且不易產生氯氣等毒性氣體,增加逃生的機會,為一有潛力發展的新建築用材料。
核能研究所於電漿熔融廢棄物處理時,意外發現部份泡沫狀的爐渣,因而基於上述的理由,期望對電漿熔煉發泡渣的行成,作進一步探討,在何種條件下,易行成泡沫狀的爐渣,以便將來利用電漿熔煉法製造泡沫狀爐渣。因此本研究擬由熱力學,動力學觀點對電漿熔煉發泡陶瓷的形成,在機制及實驗方面做一初步的探討。
本計劃,將利用實驗室內的小型電漿熔解設備,熔解不同成份的混合金屬氧化物,必要時添加一些助熔劑(fluxes)調整黏度,同時改變不同的氣體流量,以探討發泡陶瓷研製的可行性。
Great amounts of slags produced from incinerators or steel-makings contain Al2O3、SiO2 and CaO. If they were not disposed properly; the environment would be contaminated. However if they were recycled for the makings of valuable products, they would not be hazardous to the environment and would also be valuable.
A slag’s composition has many similar properties as a refractory; such as good heat insulation、 less high temperature reaction with metals、and good high- temperature-corrosion resistance.
The slags, especially foaming slags, would be potential materials for the inside-home-decorations due to their good insulation of heat and blocking of noise as well as chemical inert. The foaming slags would be beneficial in case of fire for they do not produce toxic gas easily and have good heat resistance. The time for escape would be increased. Therefore they have the potential of becoming new building materials.
The nuclear research Institute has found that foaming slag would be formed during the plasma melting of waste. This brings up interest to know which conditions would be favorable to the production of foaming slag. Therefore this project is intended to study the mechanism of formation of foaming slag with plasma melting by thermodynamics and kinetics analysis.
This study will investigate the formation of foaming slag with laboratory plasma melting facilities to melt different mixtures of metal oxides with necessary fluxes.
The experiments will be carried out in plasma torch introduced with different gases and flow rates, and different graphite anode designs to examine the feasibility of slag- forming.
目錄
摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
圖目錄 Ⅶ
表目錄 ⅩⅡ

第一章 前言 1

第二章 文獻回顧 3
2-1 發泡陶瓷製成簡介 3
2-1-1 自燒結(SHS) 3
2-1-2 溶凝膠(Sol-Gel) 4
2-1-3 腐蝕析出相造孔 5
2-1-4 硬脂酸(STA) 6
2-1-5 電漿熔煉(PAM) 7
2-2 發泡陶瓷的機械性質回顧 8
2-2-1 Sol-Gel所形成多孔狀氧化鋁之強度 8
2-2-2 PVB粉末燒結製程的機械性質 8
2-3 熔渣的結構 13
2-3-1 分子結構理論 13
2-3-2 離子結構理論 14
2-4 接觸角與濕潤 23

第三章 實驗方法與步驟 27
3-1 熔渣發泡與高溫物性實驗 27
3-1-1 電漿熔煉實驗 28
3-1-2 接觸角實驗 28
3-1-3 黏度實驗 29
3-1-4 自行設計之ESR實驗 29
3-1-5 DTA分析實驗 30
3-1-6 立體光學顯微鏡觀察 31
3-1-7 掃描穿透式點子顯微鏡(SEM)與能量分散光譜儀(EDS)分析 31
3-2 實驗設備 33
3-2-1 電漿熔煉設備 33
3-2-2 高溫接觸角測量儀 35
3-2-3 高溫黏度計設備 38
3-2-4 ESR實驗設備 43
3-3 實驗原理 45
3-3-1 電漿熔煉原理 45
3-3-2 高溫接觸角測量儀原理 49
3-3-3 高溫黏度計測定原理 50
3-4 實驗步驟 52
3-4-1 電漿熔煉操作步驟 52
3-4-2 高溫接觸角測量步驟 53
3-4-3 黏度量測步驟 54
3-4-4 ESR熔煉步驟 55
3-5 黏度計校正及其公式 56

第四章 實驗結果與討論 58
4-1 電漿實驗結果 58
4-2 高溫接觸角實驗 66
4-3 高溫黏度結果與討論 89
4-4 ESR實驗結果 95
4-5 DTA 105
4-6 SEM與EDAX分析 107

第五章 結論 115

第六章 參考文獻 117
[1] Itin VI, Gyunter VE, Shabalovskaya SA, Sachdeva RLC. Mater
Charact 1994;32-179.
[2] Li BY, Rong LJ, Li YY, Gjunter VE, Li YY. Z Metallkd
2000;91:291.
[3] Simske SJ, Sachdeva R. J Biomed Mater Res 1995;29-527.
[4] Ayers RA, Simske SJ, Bateman TA, Petkus A, Sachdeva RLC,
Gyunter VE. J Biomed Mater Res 1999;45-42.
[5] Munir ZA. Solid State Phenom 1992;25and26:197.
[6] Bratchikov AD, Merzhanov AG, Itin VI, Khachin VN, Dudarev
EF, Gyunter VE, et al. Sov Powder Metal Met Ceram
1980;19-5.
[9] Aniruddha Biswas. Acta Materialia 53 (2005) 1415–1425
[10]Yoldas, B. E., Alumina gels that form porous transparent Al2O3. J. Mater. Sci., 1975, 10, 1856–1860.
[11] Xiang-jin Ding*, Ji-zhou Zhang, Ruo-ding Wang, Chu-de Feng. Formation of porous alumina with oriented pores
[12] Yong Zhang , J.D. Santos. Journal of the European Ceramic Society 21 (2001) 169-175
[13]Shigeo Asai. APPLICATION OF HIGH MAGNETIC FIELD IN MATERIALS PROCESSING
[14] Dan Li, Donghui Wu, Xin Wang, Lude Lu, Xujie Yang. Rapid preparation of porous Fe2O3/SiO2 nanocomposites via an organic precursor
[15] F. Del Monte, M.P. Morales, D. Levy, A. Fernandez, M. Ocana, A. Roig et al., Langmuir 13 (1997) 3627.
[16] G. Ennas, A. Musinu, G. Piccaluga, D. Zedda, D. Gatteschi, C. Sangregorio et al., Chem. Mater. 10 (1998) 495.
[17]Hakan Holmberg, J.O.Nilsson and Ping Liu. ISIJ International, Vol.30(1990),pp.594-599
[19]Maherl. Boulos, Pierre Fauchais, Emil Pfender. Thermal plasmas
[20] E. Pfender et al, Plasma Technology in Metallurgical Processing (1987) p.27,35,37
[21] R. C.Eshenbach et al, Plasma Technology in Metallurgical Processing (1987) p.78
[22]陳志勇 電漿精煉不�袗�電漿氣體對雜質去除的研究(2004)
[23]VERLAG STAHLEISEN M.B.H.DUSSELDORF, Slag atlas, 1981, p25
[24]Duncan J. Shaw, Introduction to colloid and surface chemistry
[25]B.Jaruque, M.L. Gonzalez-Martin, and J. Moreno Del Pozo, Joural of colloid and interface science 161, 209-222(1993)
[26] Physical modelling of slag foaming in two-phase and three-phase systems in the churn-flow regime S.A.C. Stadler, J.J. Eksteen *, C. Aldrich
[27]陳伯揚 熔融還原煉鐵法熔渣黏度之探討(2001)
[28]Ling Zhang and Sharif Jahanashahi, Metallurgical and Materials Transaction B,Vol.29B, 1998, p177.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top