跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林本盛
研究生(外文):Ben-son Lin
論文名稱:聚三辛基塞吩/奈米碳管複合材料之製作與光伏元件研究
論文名稱(外文):The Fabrication of Poly(3-octylthiophene) / Carbon Nanotubes Nano-Composite and Photovoltaic Device Application
指導教授:陳俊維陳俊維引用關係
指導教授(外文):Chun-Wei Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:聚三辛基塞吩光伏電池奈米碳管退火表面改質
外文關鍵詞:poly (3-octylthiophene)photovoltaic cellcarbon nanotubesannealingsurface modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是探討聚三辛基塞吩和奈米碳管的複合材料製作及光電性質量測。為了使元件工程進行得更順利,必須從碳管及高分子的單一材料控制和鑑定開始。
直接成長碳管方面以密度控制和長度控制為主題,以成長直立陣列碳管為目標。高分子的基礎鑑定則以旋鍍轉速和成膜品質的關係為第一部份;第二部分則是探討高分子因退火效應結晶化的光學及電學研究。
第三部分則是製作複合材料及電性量測。實驗結果方面,直接成長碳管於基板上的策略遭遇重大的挫折,並瞭解到將聚三辛基塞吩填充入奈米結構中是一難度極高的工程問題。解決界面工程的策略是採用表面改質技術。除了電性量測外、並使用時間解析光譜測定,發現到載子存在時間隨著碳管密度的增加有減少的趨勢。
In this thesis, the engineering part of the solar cell of spin coating, annealing and composite fabrication were studied. In theory, the direct growth aligned carbon nanotubes and P3OT can be fabricated into the composite and have high solar energy conversion efficiency, the direct growth carbon nanotubes can serve as conducting channel to extract electron out of the composite. However, this kind of structure’s fabrication shows high difficulty in engineering aspect. The poor coverage of the P3OT on carbon nanotubes indicates that there exists interface problem between the carbon nanotubes and P3OT.
First, we have to make sure what the important parameter determines the polymer solar cell’s efficiency. After investigating the spin coating rate influence, we found that the spin rate only affect the P3OT’s thickness.
Second, we study the annealing effect on the P3OT’s structure. The amorphous conducting polymer needs to become crystallized that polymer’s application on electronics can become possible. We characterize the structure by absorption spectrum, photoluminescence spectrum, X-ray diffraction. And found the ordering’s evidence in the spectrum: Absorption spectrum’s peak splitting, PL spectrum’s Huang-Rhys Factor decreases as annealing temperature increases, this phenomenon shows that effective conjugation length of the polymer chain increases. X-ray’s results shows that the d-spacing of the polymer decreases, shows that the packing of the structure become denser.
Finally, we study the P3OT / Direct Growth Aligned Carbon Nanotubes composite fabrication. Applying length controlled and density controlled carbon nanotubes on this structure and using surface modification technique to increase the hydrophilicity of the carbon nanotbes surface in order to overcome the interface coverage problem. The electric properties of the composite has been characterized.
摘要 I
ABSTRACT II
ACKNOWLEDGEMENT IV
目錄 VI
表目錄 VIII
圖目錄 IX
CHAPTER 1 INTRODUCTION 1
1.1 研究目的 1
1.2 文獻回顧 3
1.2.1 緒論 3
1.3 研究動機 7
CHAPTER 2 FUNDAMENTAL OF PHOTOVOLTAIC DEVICE 10
2.1導論 10
2.2 材料受光激發後的光伏特性 11
2.3光伏元件性能與特性 13
2.3.1量子效率(Quantum Efficiency) 17
2.3.2能量轉換效率(Power Efficiency) 18
2.3.3頻譜響應(Spectral Response) 20
CHAPTER 3 SYNTHESIS AND CHARACTERIZATION OF ALIGNED CARBON NANOTUBES 24
3.1緒論 24
3.1.1研究背景 24
3.1.2奈米碳管的結構(Structure of carbon nanotubes) 25
3.1.3奈米碳管合成的方法(The methods of synthesizing carbon nanotube) 29
3.2奈米碳管在光伏元件上的應用 32
3.3奈米碳管的成長控制文獻探討 34
3.3.1奈米碳管的密度控制 34
3.3.2奈米碳管的長度控制 36
3.3.3奈米碳管的半徑控制 36
3.4實驗流程 36
3.4.1實驗流程與設計 36
3.4.2實驗儀器簡介 37
3.5結果與討論(RESULTS AND DISCUSSION) 42
3.5.1不同鐵-矽比率在鈦/矽基板上成長奈米碳管的影響 42
3.5.2短時間成長奈米碳管對長度的影響 46
3.5.3短時間成長密度控制碳管在鈦/矽基板上 48
3.5.4短時間成長密度控制碳管在矽基板上 52
3.5.5奈米碳管的X光結晶繞射鑑定 54
CHAPTER 4 GENERAL PROPERTIES OF CONDUCTING POLYMER 56
4.1導電高分子 56
4.2高分子結構的特點 58
4.3 分子材料受光激發之物理性質 59
4.4 載子在材料內的傳輸行為 60
4.5聚三辛基塞吩的基本性質 61
4.6純聚三辛基塞吩單層光伏元件製作及原理 63
4.6.1元件結構設計(圖4-6) 63
4.6.2實驗儀器簡介 64
4.6.3實驗步驟及規劃 66
4.7實驗結果 66
4.7.1旋鍍轉速對高分子膜產生的影響 66
4.7.2退火溫度對聚三辛基塞吩的研究 79
4.8結果與討論 87
CHAPTER 5 OPTICAL PROPERTIES AND ELECTRICAL PROPERTIES OF POLY (3-OCTYLTHIOPHENE)/CARBON NANOTUBES HYBRID SYSTEM 96
5.1有機高分子/半導體混參系統簡介 96
5.1.1混漿塗佈元件策略 96
5.1.2直接成長元件策略 98
5.2聚三辛基塞吩/直接成長多壁奈米碳管系統之研究 100
5.2.1聚三辛基塞吩/直接成長多壁奈米碳管元件工程 100
5.2.2聚三辛基塞吩/直接成長奈米碳管光性的探討 103
5.2.3聚三辛基塞吩/直接成長奈米碳管元件電性的探討 106
CHAPTER 6 CONCLUSION 109
REFERENCES 110
[1]Intergovernmental Panel on Climate Change(IPCC), “Third Assessment Report of Working Group I-Summary for Policy makers”,(2001) Web page:http://www.ipcc.ch/
[2]Wendy Uyen Huynh, University of California, Berkeley, PhD thesis, 2002.
[3]Reynard DL, ANDREW A, APPLIED OPTICS 5, 1, 23, 1966
[4]WITHEREL.PG, FAULHABE.ME, APPLIED OPTICS 9, 1, p73, 1970
[5]JAMES LW, MOON RL, APPLIED PHYSICS LETTERS 26, 8, p467-470, 1975
[6]DEBERNARDY R, DONAGHEY LF, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 123, 8, C264-C264, 1976.
[7]Yazawa Y, Tamura K, Watahiki S, SOLAR ENERGY MATERIALS AND SOLAR CELLS, 50 N 1-4, p229-235, 1998
[8].Matsubara H, Tanabe T, Moto A, et al, SOLAR ENERGY MATERIALS AND SOLAR CELLS, 50, N1-4, p177-184 1998.
[9]Feteha MY, Eldallal GM, RENEWABLE ENERGY, 28, 7, p1097-1104, 2003.
[10]Song DY, Aberle AG, Xia J, APPLIED SURFACE SCIENCE, 195, 1-4, p291-296, 2002.
[11]Lee JC, Kang KH, Kim SK, et al, SOLAR ENERGY MATERIALS AND SOLAR CELLS, 64, 2, p185-195, 2000.
[12]Ali S, Gharghi M, Sivoththaman S, et al, JOURNAL OF MATERIALS SCIENCE, 40, 6, p1469-1473, 2005.
[13]Tucci M, de Cesare G, JOURNAL OF NON-CRYSTALLINE SOLIDS 338, p663-667, 2004.
[14]Lee SH, Lee I, Yi J, SURFACE & COATINGS TECHNOLOGY, 153, 1, p67-71, 2002.
[15]Budaguan BG, Sherchenkov AA, Stryahilev DA, JOURNAL OF THE ELECTROCHEMICAL SOCIETY , 145, 7, p2508-2512, 1998
[16]Morikawa H, Nishimoto Y, Naomoto H, SOLAR ENERGY MATERIALS AND SOLAR CELLS 53, 1-2, p23-28, 1998
[17]F. Gutmann and L.E. Lyons, Organic Semiconductors, Wiley, 1967, Chap. 8, P. 516.
[18]H. Kallmann and M. Silver (eds.), Symposium on Electrical Conductivity in Organic Solids, Wiley-Inerscience, New York, 1961, pp. 39, 69, 291.
[19]LEE CH, YU G, MOSES D, MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 256, p745-750, 1994.
[20] Haugeneder A, Neges M, Kallinger C, PHYSICAL REVIEW B, 59, 23, p15346-15351 ,1999
[21]Coakley KM, McGehee MD, APPLIED PHYSICS LETTERS 83, 16, p3380-3382, 2003.
[22]Brabec CJ, Cravino A, Meissner D, THIN SOLID FILMS 403, p368-372, 2002.
[23]Kim H, Lee K, Park YG, JOURNAL OF THE KOREAN PHYSICAL SOCIETY 42, 1, p183-186, 2003.
[24]Zhang FL, Johansson M, Andersson MR, SYNTHETIC METALS, 137, 1-3, p1401-1402 Part 2 Sp. Iss. SI, 2003.
[25]Jun Gao, Fumitomo Hide, Hailiang Wang, Synthetic Metals, 84,p979-980, 1997.
[26]N. C. Greenham, Xiaogang Peng, A. P. Alivisatos, Synthetic Metals, 84, p545-546, 1997.
[27]J. J. Dittmer, R. Lazzaroni, Ph. Leclere, Solar Energy Materials & Solar Cells, 61, p53-61, 2000.
[28]Anders Hagfeldt, Michael Gratzel, Accounts of Chemical Research, 33, p269-277, 2000.
[29]Wedy U. Huynh, Janke J. Dittmer, William C. Libby, Advanced Functional Materials, 13, N1, p73-79, 2003.
[30]A. Petrella, M. Tamborra, P. D. Cozzoli, Thin Solid Films, 451-452, p64-68, 2004.
[31]C. Y. Kwong, A.B. Djuristic, P. C. Chui, Chemical Physical Letters, 384, p372-375, 2003.
[32]Frederik C. Krebs, Jon E. Carle, Nicolaj Cruys-Bagger, Morten Anderson, Solar Energy Materials & Solar Cells, 86, p499-516, 2005.
[33]Henry, J. Snaith, Ana C. Arias, Arne C. Morteani, Nanoletters, V2, N12, p1353-1357, 2002
[34]Origin of the open circuit voltage of plastic solar cells Brabec CJ, Cravino A, Meissner D, et al. ADVANCED FUNCTIONAL MATERIALS 11 (5): 374-380 OCT 2001
[35]Organic Photovoltaics Mechanism,Materials, and Devices Sam-Shajing Sun Niyazi Serdar Sariciftci Taylor and Francis Group P586~590
[36]Europa.eu.int/.../ nn/nn_rt/nn_rt_pv/images/
[37]Organic Photovoltaics Concepts and Realization C.J. Brabec V. Dyakonov J. Parisi N.S. Sariciftci (Eds.)
[38]S. Iijima et al,Nature 354,56-58(1991)
[39]S. Iijima and T. Ichihashi, Nature (London) 363,P603,1993
[40]Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. Fullerenes and Carbon Nanotubes, Academic,San Diego, 1996
[41]S. B. Sinnott, R. Andrews., D. Qian., A. M. Rao., Mao Z, E. C. Dickey and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chemical Physics Letters, 315, 25-30(1999).
[42]”Carbon Nanotubes –preparation and properties”,ed. By Thomas W. Ebbesen, CRC Press, BocaRaton, New York, London, Tokyo, 1997.
[43]“Rapid production of carbon nanotubes by high-power laser ablation” Jiang WP, Molian P, Ferkel H JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME 127 (3): 703-707 AUG 2005
[44]“A growth mark method for studying growth mechanism of carbon nanotube arrays” Liu K, Jiang KL, Feng C, et al. CARBON 43 (14): 2850-2856 NOV 2005
[45]“A growth mark method for studying growth mechanism of carbon nanotube arrays” Kai Liu, Kaili Jiang *, Chen Feng, Zhuo Chen, Shoushan Fan Carbon 43 (2005) 2850–2856
[46]Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites Musa I, Baxendale M, Amaratunga GAJ, et al. SYNTHETIC METALS 102 (1-3): 1250-1250 JUN 1999
[47]Single-wall carbon nanotube/conjugated polymer photovoltaic devices Kymakis E, Amaratunga GAJ APPLIED PHYSICS LETTERS 80 (1): 112-114 JAN 7 2002
[48]High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites Kymakis E, Alexandrou I, Amaratunga GAJ JOURNAL OF APPLIED PHYSICS 93 (3): 1764-1768 FEB 1 2003
[49]Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix Kymakis E, Amaratunga GAJ SOLAR ENERGY MATERIALS AND SOLAR CELLS 80 (4): 465-472 DEC 2003
[50]Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices Bhattacharyya S, Kymakis E, Amaratunga GAJ CHEMISTRY OF MATERIALS 16 (23): 4819-4823 NOV 16 2004
[51]Carbon nanotubes as electron acceptors in polymeric photovoltaics Kymakis E, Amaratunga GAJ REVIEWS ON ADVANCED MATERIALS SCIENCE 10 (4): 300-305 Sp. Iss. SI OCT 2005
[52]Post-fabrication annealing effects in polymer-nanotube photovoltaic cells Kymakis E, Koudoumas E, Franghiadakis I, et al. JOURNAL OF PHYSICS D-APPLIED PHYSICS 39 (6): 1058-1062 MAR 21 2006
[53]Single-wall carbon nanotube-polymer solar cells Landi BJ, Raffaelle RP, Castro SL, et al. PROGRESS IN PHOTOVOLTAICS 13 (2): 165-172 MAR 2005
[54]CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells Landi BJ, Castro SL, Ruf HJ, et al. SOLAR ENERGY MATERIALS AND SOLAR CELLS 87 (1-4): 733-746 Sp. Iss. SI MAY 2005 PHYSICA B-CONDENSED MATTER 338 (1-4): 366-369 OCT 2003
[55]Electrical transport properties of conjugated polymer onto self-assembled aligned carbon nanotubes Valentini L, Armentano I, Santilli P, et al. DIAMOND AND RELATED MATERIALS 12 (9): 1524-1531 SEP 2003
[56]Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films Raravikar NR, Schadler LS, Vijayaraghavan A, et al. CHEMISTRY OF MATERIALS 17 (5): 974-983 MAR 8 2005
[57]浙江大學博士論文 徐軍明 定向納米碳管複合膜的製備與其表徵
[58]Fabrication and characterization of OLEDs using MEH-PPV and SWCNT nanocomposites Ha YG, You EA, Kim BJ, et al. SYNTHETIC METALS 153 (1-3): 205-208 Part 2 Sp. Iss. SI SEP 21 2005
[59]Photoinduced charge transfer in poly(p-phenylene vinylene) derivatives and carbon nanotube/C-60 composites Yang C, Wohlgenannt M, Vardeny ZV, et al.
[60]Array geometry, size and spacing effects on field emission characteristics of aligned carbon nanotubes Wong YM, Kang WP, Davidson JL, et al. DIAMOND AND RELATED MATERIALS 14 (11-12): 2078-2083 NOV-DEC 2005
[61]High growth rate of vertically aligned carbon nanotubes using a plasma shield in microwave plasma-enhanced chemical vapor deposition Kinoshita H, Kume I, Sakai H, et al. CARBON 42 (12-13): 2753-2756 2004
[62]Tube number density control of carbon nanotubes on anodic aluminum oxide template Chen PL, Chang JK, Pan FM, et al. DIAMOND AND RELATED MATERIALS 14 (3-7): 804-809 Sp. Iss. SI MAR-JUL 2005
[63]Growth of aligned carbon nanotubes with controlled site density Tu Y, Huang ZP, Wang DZ, et al. APPLIED PHYSICS LETTERS 80 (21): 4018-4020 MAY 27 2002
[64]Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition Choi YC, Shin YM, Lee YH, et al. APPLIED PHYSICS LETTERS 76 (17): 2367-2369 APR 24 2000
[65]Density control of carbon nanotubes using NH3 plasma treatment of Ni catalyst layer Choi JH, Tae YL, Choi SH, et al. THIN SOLID FILMS 435 (1-2): 318-323 JUL 1 2003
[66]Controlling the site density of multiwall carbon nanotubes via growth conditions Siegal MP, Overmyer DL, Kaatz FH APPLIED PHYSICS LETTERS 84 (25): 5156-5158 JUN 21 2004
[67]Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst Sato S, Kawabata A, Kondo D, et al. CHEMICAL PHYSICS LETTERS 402 (1-3): 149-154 JAN 24 2005
[68]奈米碳管成長控制與場發射性質與鋰離子電池應用的研究。作者:許建宇 碩士論文,國立台北科技大學機電整合研究所 (民92)
[69]Electronic structure of atomically resolved carbon nanotubes Wildoer JWG, Venema LC, Rinzler AG, et al. NATURE 391 (6662): 59-62 JAN 1 1998
[70]Single- and multi-wall carbon nanotube field-effect transistors Martel R, Schmidt T, Shea HR, et al. APPLIED PHYSICS LETTERS 73 (17): 2447-2449 OCT 26 1998
[71]Synthesis and characterization of MWNTs with narrow diameter over nickel catalyst by MPCVD Wang SG, Zhang Q, Yoon SF, et al. SCRIPTA MATERIALIA 48 (4): 409-412 FEB 17 2003
[72]Nanotubes C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, Manashi Nath CHEMPHYSCHEM 2001,2,p78~p105
[73]以奈米碳管為基底複合材料在微型超高電容器之應用 作者:方偉權Carbon nanotube based nanocomposites for miniaturized supercapacitor applications 國立清華大學材料科學工程研究所民國94年博士論文
[74]徐逸明,化學氣相沈積法及電漿輔助化學氣相沈積法於低溫合成奈米碳管之研究,成功大學化學工程研究所博士論文,民國89年。
[75]Growth control of single and multi-walled carbon nanotubes by thin film catalyst Yoon YJ, Bae JC, Baik HK, et al. CHEMICAL PHYSICS LETTERS 366 (1-2): 109-114 NOV 25 2002
[76]The catalyst in the CCVD of carbon nanotubes - a review Dupuis AC PROGRESS IN MATERIALS SCIENCE 50 (8): 929-961 NOV 2005
[77]Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy Teo KBK, Chhowalla M, Amaratunga GAJ, et al. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 20 (1): 116-121 JAN-FEB 2002
[78]C. K. Chiang, Y. W. Park, A. J. Heeger, The Journal of Chemical Physics, V69, I11, P5098-5104, 1978.
[79]Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties Chen TA, Wu X, Rieke RD. J Am Chem Soc 1995;117:233–44.
[80]Polythiophenes-Electrically Conductive Polymers By G. Schopf and G. KoBmehl Advances in Polymer Science 129 P82~86
[81]A systematic study of the anisotropic optical properties of thin poly(3-octylthiophene)-films in dependence on growth parameters Zhokhavets U, Gobsch G, Hoppe H, et al. THIN SOLID FILMS 451: 69-73 Sp. Iss. SI MAR 22 2004
[82]The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells Al-Ibrahim M, Roth HK, Schroedner M, et al. ORGANIC ELECTRONICS 6 (2): 65-77 APR 2005
[83]PHOTOOXIDATION OF POLYMERS USED IN ELECTROLUMINESCENT DEVICES CUMPSTON BH, JENSEN KF SYNTHETIC METALS 73 (3): 195-199 AUG 15 1995
[84]Proton irradiation effect on single-wall carbon nanotubes in a poly(3-octylthiophene) matrix Neupane PP, Manasreh MO, Weaver BD, et al. APPLIED PHYSICS LETTERS 86 (22): Art. No. 221908 MAY 30 2005
[85]Poly-3-octylthiophene films with ultra high tensile strength and flexibility Zhou L, Gao ZQ, Huang H MATERIALS LETTERS 37 (4-5): 182-186 NOV 1998
[86]Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene Kim Y, Choulis SA, Nelson J, et al. APPLIED PHYSICS LETTERS 86 (6): Art. No. 063502 FEB 7 2005
[87]Enhanced photoluminescence at poly(3-octyl-thiophene)/TiO2 interfaces van der Zanden B, van de Krol R, Schoonman J, et al. APPLIED PHYSICS LETTERS 84 (14): 2539-2541 APR 5 2004
[88]Intrachain photoluminescence properties of conjugated polymers as revealed by long oligothiophenes and polythiophenes diluted in an inactive solid matrix Katsuichi Kanemoto,1,* Tatsuji Sudo,1 Ichiro Akai,1 Hideki Hashimoto,1,2 Tsutomu Karasawa,1 Yoshio Aso,3 and Tetsuo Otsubo4 PHYSICAL REVIEW B 73, 235203 _2006
[89]Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) Brown PJ, Thomas DS, Kohler A, et al. PHYSICAL REVIEW B 67 (6): Art. No. 064203 FEB 1 2003
[90]Handbook of Conducting Polymers Edited by TERJE A. SKOTHEIM RONALD L. ELSENBAUMER JOHN R. REYNOLDS Second Edition,Revised and Expanded
[91]A. G. MacDiarmid and A. J. Epstein,Synth. Met. 65:103(1994)
[92]To Increase the Photon Harvesting in the Photoactive Layer of Bulk Heterojunction Organic Solar Cells Dissertation zur Erlangung des akademischen Grades Doctor Technicae im Doktoratsstudium der technischen Wissenschaften Angefertigt am Linzer Institut für Organische Solarzellen Dipl. Ing. Christoph Winder page4-8 figure4.5
[93]Novel head-to-tail coupled oligo(3-hexylthiophene) derivatives for photovoltaic applications Jens Cremer Dissertation Zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm P285~286
[94]Transport phenomena of poly(3-octadecylthiophene) at the solid-liquid phase transition Onoda M, Tada K, Miyabe K SYNTHETIC METALS 153 (1-3): 173-176 Part 2 Sp. Iss. SI SEP 21 2005
[95]Effect of thermal annealing on surface morphology and physical properties of poly(3-octylthiophene) films Singh R, Kumar J, Singh RK, et al. POLYMER 46 (21): 9126-9132 OCT 7 2005
[96]Annealing behavior of conductive poly(3-hexylthiophene) films Polymer Volume38 Number7 1997 1749 S. Marchant* and P. J. S. Foot
[97]Structural and optical properties of both pure poly (3-octylthiophene) (P3OT) and P3OT/fullerene films Erb T, Raleva S, Zhokhavets U, et al. THIN SOLID FILMS 450 (1): 97-100 FEB 22 2004
[98]High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends Li G, Shrotriya V, Huang JS, et al. NATURE MATERIALS 4 (11): 864-868 NOV 2005
[99]Hybrid polymer/metal oxide solar cells based on ZnO columnar structures Peiro AM, Ravirajan P, Govender K, et al. JOURNAL OF MATERIALS CHEMISTRY 16 (21): 2088-2096 2006
[100]Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer Kang YM, Park NG, Kim D APPLIED PHYSICS LETTERS 86 (11): Art. No. 113101 MAR 14 2005
[101]Solar energy converter and solar energy conversion system Akamatsu United States Patent 6,713,668
[102]Controlling Steps During Early Stages of the Aligned Growth of Carbon Nanotubes Using Microwave Plasma Enhanced Chemical Vapor Deposition Advanced Function Material 2002,12, No.10,October P.687~692 L. C. Chen et al.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊