跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周群淵
研究生(外文):Chun-Yuan Chou
論文名稱:氧化鎂基磁性穿隧接面之顯微結構與磁阻研究
論文名稱(外文):Study of microstructures and magnetoresistance of MgO based magnetic tunnel junctions
指導教授:郭博成
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:166
中文關鍵詞:氧化鎂磁性穿隧接面顯微結構磁阻
外文關鍵詞:MgOmagnetic tunnel junctionmicrostructuremagnetoresistance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以直流與射頻磁控濺鍍的方式在矽基板上鍍製磁性穿隧接面,利用超高真空的濺鍍機,配合電子束微影及氬離子蝕刻來製作微米尺度的自旋依賴穿隧接面。本實驗所鍍製的磁性穿隧接面是使用準自旋閥的結構,主要是利用兩層鐵磁性薄膜頑磁力不同,當施加一外加磁場時,隨著磁場大小的不同,形成兩鐵磁性層磁化方向平行與反平行兩種狀態,並利用此兩種狀態來得到低電阻和高電阻的差異。我們將針對MgO薄膜成長於不同的鐵磁性層時(Co、CoFe、CoFeB、CoFeC),探討其微結構和穿隧磁阻的變化,同時藉由改變工作壓力和熱處理溫度來探討MgO薄膜微結構的改變。
經由穿透式電子顯微鏡的分析顯示,使用Co或CoFe底層將使MgO薄膜形成奈米晶粒和非晶質混合的結構,且MgO薄膜的成長不具特定結晶方向,呈現散亂的晶格排列方式。但是當MgO薄膜成長於非晶質的CoFeB、CoFeC或SiO2底層時,MgO薄膜在初鍍狀態即可具有(001)優選方向。從X光繞射的分析顯示,當MgO薄膜經過400 ℃、30分鐘的熱處理後,其(001)織構未有顯著的提升,但有助於MgO薄膜應力的釋放。
根據穿透式電子顯微鏡以及穿隧磁阻的研究結果顯示,當Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFe (5 nm)/Ta (5 nm)樣品經過300 ℃、30分鐘的熱處理之後,可以得到約25 %的穿隧磁阻值且CoFeB薄膜會利用MgO的表面形成MgO (001)[100]//CoFeB (001) [110]的磊晶關係。當我們於MgO薄膜和CoFe薄膜間引入CoFeB中間層時,CoFeB/CoFe上磁性層將於初鍍狀態形成(111)從優取向,此有助於提升初鍍薄膜的穿隧磁阻值,將會由Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFe (5 nm)/Ta (5 nm)薄膜的1 %提高至Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFeB (1.2 nm)/CoFe (3 nm)/Ta (5 nm)薄膜的12 %。但是當後者經過300 ℃、30分鐘的熱處理後,仍可得到約25 %的穿隧磁阻值,即鐵磁性中間層的引入對於最佳穿隧磁阻值的提高並無顯著效果。此外,根據CoFeC/MgO/CoFe磁性穿隧接面的研究結果顯示,當初鍍Os (2 nm)/CoFeC (6 nm)/MgO (2.5 nm)/CoFe (3 nm)/Ta (5 nm)樣品經過150 ℃的熱處理後,穿隧磁阻值可以由9 %提高至12 %,但是隨著熱處理溫度繼續提高,穿隧磁阻值和RA值則逐漸降低。根據電流-電壓曲線的量測結果顯示Os/CoFeC/MgO/CoFe/Ta樣品的絕緣層特性在經過350 ℃、30分鐘熱處理後已被明顯的破壞。
Magnetic tunnel junctions are deposited on Si substrate by dc and rf magnetron sputtering in an ultra-high vacuum chamber. The micro-sized spin-dependent tunnel junction is patterned by e-beam lithography and ion-milling. The pseudo-spin valve magnetic tunnel junction is fabricated in this work. Due to the difference in the coercivity between two ferromagnetic layers, the parallel and antiparallel spin states of the two ferromagnetic layers can be obtained as the magnetic field is varied. The effects of underlayer materials, working pressure and annealing temperatures on the microstructure and magnetoresistance of the MgO film are investigated.
TEM analysis shows that the as-deposited MgO film with Co or CoFe underlayer has nanocrystalline structure or mixing phases of nanocrystalline and amorphous. Besides, the MgO grains are random-oriented. The as-deposited MgO thin film with (001) preferred orientation is obtained as the MgO film is deposited on CoFeB、CoFeC or SiO2 underlayer. X-ray diffraction analysis shows that the (001) preferred orientation of the MgO thin film does not enhance significantly after post-annealing at 400 ℃ for 30 minutes. However, that is beneficial for relaxing the stress in the MgO thin film.
Magnetoresistance measurements indicate that the tunneling magnetoresistance ratio of about 25% is obtained by annealing the Os (2 nm)/CoFeB (5 nm)/MgO (2.5 nm)/CoFe (5 nm)/Ta (5 nm) thin film at 300 ℃ for 30 minutes. The MgO (001)[100]//CoFeB (001) [110] orientation relationship can be obtained according to the TEM analysis. The as-deposited CoFe thin film with (111) preferred orientation can be obtained by inserting the CoFeB thin layer between the MgO and CoFe thin layers. Therefore, the tunnel magnetoresistance ratio for the as-deposited magnetic tunnel junction is increased from 1 % for the Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFe (5 nm)/Ta (5 nm) thin film to 12 % for the Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFeB (1.2 nm)/CoFe (3 nm)/Ta (5 nm). It is observed that the insertion of the ferromagnetic spacer does not improve the magnetoresistance ratio after 300 oC annealing. The tunnel magnetoresistance ratio for the Os (2 nm)/CoFeB (6 nm)/MgO (2.5 nm)/CoFeB (1.2 nm)/CoFe (5 nm)/Ta (5 nm) thin film is about 25 % after annealing at 300 ℃ for 30 minutes. The tunnel magnetoresistance for the as-deposited Os (2 nm)/CoFeC (6 nm)/MgO (2.5 nm)/CoFe (3 nm)/Ta (5 nm) thin film is increased from 9 % to 12 % after annealing at 150 ℃. However, the tunnel magnetoresistance and the resistance-area product are decreased as the annealing temperature is increased above 150 ℃. From the I-V curve measurement of the Os/CoFeC/MgO/CoFe/Ta thin film, it can be see that the barrier properties is deteriorated after annealing at 350 ℃ for 30 minutes.
中文摘要…………………………………………………………………I
英文摘要………………………………………………………………III
目錄………………………………………………………………………V
圖目錄……………………………………………………………………IX

第一章 前言……………………………………………………………1
第二章 理論基礎與文獻回顧…………………………………………3
2-1 理論基礎………………………………………………….3
2-1-1 各類磁阻簡介……………………………………3
2-1-2 自旋相關穿隧效應………………………………7
2-1-2 磁性穿隧接面的應用……………………………12
2-1-3-1 磁性隨機存取記憶體…………………………12
2-1-3-2 硬碟讀取頭……………………………………14
2-1-4 磊晶Fe/MgO/Fe多層膜之穿隧磁阻理論………16
2-2 文獻回顧…………………………………………………20
第三章 實驗方法……………………………………………………35
3-1 實驗流程……………………………………………35
3-2 靶材選取………………………………………………36
3-2-1 磁性層靶材…………………………………36
3-2-2 Ta及Os靶材…………………………………37
3-2-3 MgO靶材靶材…………………………………37
3-3 基板製備…………………………………………………37
3-3-1 基板選取…………………………………………37
3-3-2 基板清洗…………………………………………37
3-4 實驗裝置與薄膜製備……………………………………38
3-4-1 實驗裝置…………………………………………38
3-4-2 薄膜濺鍍…………………………………………39
3-4-3 薄膜熱處理………………………………………39
3-5穿隧磁阻樣品製作………………………………………40
3-5-1 Hard mask…………………………………………40
3-5-2 電子束微影………………………………………40
3-6基本性質分析與量測………………………………………43
3-6-1 AFM表面粗糙度觀察…………………………………43
3-6-2 薄膜磁性分析………………………………………43
3-6-3 磁阻量測系統………………………………………44
3-6-4 XRD繞射分析…………………………………………44
3-7薄膜組成及縱深分析…………………………………….45
3-7-1 ESCA表面分析………………………………………45
3-7-2 EDS成分分析…………………………………………45
3-7-3 AES元素縱深分析…………………………………46
3-8 薄膜微結構分析………………………………………47
3-8-1 TEM微結構觀察………………………………47
3-8-2 SEM微結構觀察…………………………………50
第四章 結果與討論…………………………………………………..61
4-1薄膜的微結構觀察……………………………………………61
4-1-1 Co/MgO/NiFe薄膜之微結構觀察………………………61
4-1-2 CoFe/MgO/CoFeB薄膜之微結構觀察………………………69
4-1-3 CoFeB/MgO及CoFeC/MgO薄膜之微結構觀察………………70
4-1-4 CoFeB/MgO/FePt薄膜之微結構研究………………………83
4-1-5 氬氣壓力對MgO薄膜微結構的影響………………………85
4-2穿隧磁阻的研究…………………………………………………88
4-2-1 CoFeB/MgO/Co磁性穿隧接面……………………………………89
4-2-2 CoFeB/MgO/CoFe磁性穿隧接面………………………92
4-2-3 CoFeC/MgO/CoFe磁性穿隧接面………………………95
4-2-4 CoFeB/MgO/CoFeB/CoFe磁性穿隧接面……………………98
第五章 結論………………………………………………………147
參考文獻…………………………………………………………151
研究著作………………………………………………………157
【1】M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
【2】J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
【3】S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 294, 1488 (2001).
【4】http://www.research.ibm.com/research/gmr.html.
【5】D. J. Monsma, J. C. Lodder, Th. J. A. Popma, and B. Dieny, Phys. Rev. Lett. 74, 5260 (1995).
【6】D. J. Monsma, R. Vlutters, and J. C. Lodder, Science 281, 407 (1998).
【7】R. Jansen, J. Phys. D: Appl. Phys. 36, R289 (2003).
【8】T. R. McGuire and R. I. Potter, IEEE trans. Magn. 10, 1019 (1975).
【9】S. Jin, T. H. Tiefel, M. MaCormack, R. A. Fastnact, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
【10】R. M. Kuster, J. Singlrton, D. A. Keen, R. McGreevy, and W. Hayes, Phys. Rev. B 155, 362 (1989).
【11】R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)
【12】B. Dieny, J. Magn. Magn. Mater. 136, 335 (1994).
【13】GMR book
【14】M. Julliere, Phys. Lett., 54A, 225 (1975).
【15】P. M. Tedrow and R. Meservey, Phys. Rev. B7 318 (1973).
【16】J. S. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999).
【17】J. C. Slonczewski, Phys. Rev. B. 39, 6995 (1989)
【18】S. Ikeda, J. Hayakawa, Y. M. Lee, R. Sasaki, T. Meguro, F. Matsukura and H. Ohno, Jpn. J. Appl. Phys. 44 L1442 (2005).
【19】M. Durlam, P. Naji, A. Omair, M. DeHerrera, J. Calder, J. M. Slaughter, B. Engel, N. Rizzo, G. Grynkewich, B. Butcher, C. Tracy, K. Smith, K. Kyler, J. Ren, J. Molla, B. Fed, R. Williams, and S. Tehrani, IEEE, 2002 Symposium on VLSI Circuits Digest of Technical Papers 12.4, 158 (2002).
【20】Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, Appl. Phys. Lett. 84, 3118 (2004).
【21】G. D. Fuchs, N. C. Emley, I. N. Krivorotov, P. M. Braganca, E. M. Ryan, S. I. Kiselev, J. C. Sankey, D. C. Ralph, R. A. Buhrman, and J. A. Katine, Appl. Phys. Lett. 85, 1205 (2004).
【22】D. W. Abraham and P. L. Trouilloud, U. S. Patent 6,385,082 (2002).
【23】O. Redon, M. Kerekes, R. Sousa, L. Prejbeanu, H. Sibuet, F. Ponthennier, A. Persico, and J. P. Nozières, Proceedings of the First International Conference on Memory Technology and Design (ICMTD-2005), Giens, France, May 21–24, 2005, pp. 113–114.
【24】W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).
【25】J. Mathon and A. Umersky, Phys. Rev. B 63, 220403R (2001).
【26】D. Wang, C. Nordman, J. M. Daughton, , Z. Qian, and J. Fink, IEEE Trans. Magn. 40, 2269 (2004).
【27】M. Hehn, C. de Buttet, G. Malinowski, E. Snoeck, C. Tiusan, and F. Montaigne, Eur. Phys. J. B 40, 19 (2004).
【28】S. Sankar, B. Dieny, and A. E. Berkowitz, J. Appl. Phys. 81, 5512 (1997).
【29】J. Wang, S. Cardoso, P. P. Freitas, P. Wei, N. P. Barradas, and J. C. Soares, J. Appl. Phys. 89, 6868 (2001).
【30】T. S. Yoon, S. Yoshimura, M. Tsunoda, M. Takahashi, B. C. Park, Y. W. Lee, Y. Li, C. O. Kim, Journal of Magnetics 9 17 (2004).
【31】M. M. Schwickert, J. R. Childress, R. E. Fontana, A. J. Kellock, P. M. Rice, M. K. Ho, T. J. Thompson, and B. A. Gurney, J. Appl. Phys. 89, 6871 (2001).
【32】H. J. Shim, I. J. Hwang, K. S. Kim, B. K. Cho, J. T. Kim, and J. H. Sok, J. Appl. Phys. 92, 1095 (2002).
【33】M. Sharma, J. H. Nickel, T. C. Anthony, and S. X. Wang, Appl. Phys. Lett., 77, 2219 (2000).
【34】P. Rottlander, M. Hehn, O. Lenoble, and A. Schuhl, Appl. Phys.Lett. 78, 3274 (2001).
【35】M. F. Gillies, A. E. T. Kuiper, J. B. A. van Zon, and J. M. Sturm, Appl. Phys. Lett. 78, 3496 (2001).
【36】Z. Li, Cornelis de Groot, and J. S. Moodera, Appl. Phys. Lett. 77, 3630 (2000).
【37】J. Wang, P. P. Freitas, E. Snoeck, P. Wei, and J. C. Soares, Appl.Phys. Lett. 79, 4387 (2001).
【38】J. Hayakawa, K. Ito, S. Kokado, M. Ichimura, A. Sakuma, M. Sugiyama, H. Asano, and M. Matsui, J. Appl. Phys. 91, 8792 (2002).
【39】S. S. Lee, Y. I. Kim, D. G. Hwang, K. Rhie, S. W. Kim, and J. R. Rhee, J. Appl. Phys. 93, 8047 (2003).
【40】B. Doudin, G. Redmond, S. E. Gilbert, and J.-Ph. Ansermet, Phys. Rev. Lett. 79, 933 (1997).
【41】C. L. Platt, B. Dieny, and A. E. Berkowitz, J. Appl. Phys. 81, 5523 (1997).
【42】M. Bowen, V. Cros, F. Petroff, A. Fert, C. Martinez Boubeta, J. L. Costa-Kramer, J. V. Anguita, A. Cebollada, F. Briones, J. M. de Teresa, L. Morellon, M. R. Ibarra, F. Guell, F. Peiro and A. Cornet, Appl. Phys. Lett. 79 1655 (2001).
【43】J. Faure-Vincent, C. Tiusan, E. Jouguelet, F. Canet, M. Sajieddine, C. Bellouard, E. Popova, M. Hehn, F. Montaigne, and A. Schuhl, Appl. Phys. Lett. 82 4507 (2003).
【44】S. Yuasa, A. Fukushima, T. Nagahama,K. Ando, Y. Suzuki, Jpn J. Appl. Phys. 43, L588 (2004).
【45】S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
【46】S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nat. Mater. 3, 862 (2004).
【47】D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suziki, and K. Ando, Appl. Phys. Lett. 86 092502 (2005).
【48】J. Hayakawa, S. Ikeda, F. Matsukura, H.Takahashi, and H. Ohno, Jpn. J. Appl. Phys. 44 L587 (2005).
【49】E. Popova, J. Faure-Vincent, C. Tiusan, C. Bellouard, H. Fischer, M. Hehn, F. Montaigne, M. Alnot, S. Andrieu, A. Schuhl, E. Snoeck, and V. da Costa, Appl. Phys. Lett. 81 1035 (2002).
【50】K. Tsunekawa, D. D. Djayaprawira, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 87 072503 (2005).
【51】Chia-Hua Ho, Spin-dependent tunneling and interlayer exchange bias coupling effect, PhD Thesis(2002).
【52】E. Bauer and Jan H. Van der Merve, Phys. Rev. B 33, 3657 (1986).
【53】Robert E. Reed-Hill, “Physical metallurgy principles”, third edition, 1992.
【54】L. Néel, C. R. Acad. Sci. 255, 1676 (1962).
【55】H. Yang, S. Yang, C. Kaiser, and S. Parkin, 50th Annual Conference on Magnetism and Magnetic Materials, EB-12 (2005).
【56】J. Schmalhorst, H. Brückl, G. Reiss, G. Gieres, and J. Wecker, J. Appl. Phys. 91, 6617 (2002).
【57】J. Nowak, D. Song, and E. Murdock, J. Appl. Phys. 87, 5203 (2000).
【58】Y. Ando, H. Kubota, M. Hayashi, M. Kamijo, K. Yaoita, A. Chak Chung Yu, X.-F. Han, and T. Miyazaki, Jpn. J. Appl. Phys. 39, 5832 (2000).
【59】R. C. Sousa, J.J. Sun, V. Soares, P.P. Freitas, A. Kling, M.F. da Silva, J.C. Soares, J. Appl. Phys. 85 5258 (1999).
【60】S. Cardoso, P.P. Freitas, C. de Jesus, P. Wei, J.C. Soares, Appl. Phys. Lett. 76 610 (2000).
【61】K.I. Lee, J.H. Lee, W.Y. Lee, K.W. Rhie, J.G. Ha, C.S. Kim, K.H. Shin, J. Magn. Magn. Mater. 239, (2002) 120.
【62】T. Dimopoulos, V. Da Costa, C. Tiusan, K. Ounadjela, and H. A. M. van den Berg, Appl. Phys. Lett. 79, 3110 (2001).
【63】C. E. Wicks and F. E. Block, “Thermodynamic properties of 65 elements-their oxides, halides, carbides, and nitrides”, Washington.
【64】T. G. S. M. Rijks, R. Coehoorn, J. T. F. Daemen, and W. J. M. de Jonge, J. Appl. Phys. 76, 1092 (1994).
【65】T. Moriyama, C. Ni, W. G. Wang, X. Zhang, and John Q. Xiao, Appl. Phys. Lett. 88, 222503 (2006)
【66】S. Ikeda, J. Hayakawa, Y. M. Lee, T. Tanikawa, F. Matsukura, and H. Ohno, J. Appl. Phys. 99, 08A907 (2006).
【67】B. Nadgorny, I. I. Mazin, M. Osofsky, R. J. Soulen, Jr., P. Broussard, R. M. Stroud, D. J. Singh, V. G. Harris, A. Arsenov, and Y. Mukovskii, Phys. Rev. B 63, 184433 (2001).
【68】Z. Sefrioui, V. Cros, A. Barthélémy, V. Peña, C. León, J. Santamaria, M. Varela, and S. J. Pennycook, Appl. Phys. Lett., 88, 022512 (2006).
【69】T. Marukame, T. Ishikawa, K. I. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 88, 262503 (2006).
【70】Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett., 88, 192508 (2006).
【71】T. Dimopoulos, C. Tiusan, V. da Costa, K. Ounadjela, and H. A. M. van den Berg, Appl. Phys. Lett. 77, 3624 (2000).
【72】X.-G. Zhang and W. H. Butler, Phys. Rev. B 70, 172407 (2004)
【73】L. Z. Mezey and J. Giber, Jpn. J. Appl. Phys. 21 1569 (1982).
【74】Q Jiang, H M Lu, and M Zhao, J. Phys.: Condens. Matter 16, 521 (2004).
【75】C. Y. Chou, P. C. Kuo, Y. D. Yao, S. C. Chen, A. C. Sun, and C. T. Lie, J. Appl. Phys. 93, 7205 (2003).
【76】JCPDS powder diffraction file cards, 1997.
【77】David B. Williams and C. Barry Carter, Transmission Electron Microscopy, New York and London, Plenum Press, 1996.
【78】Y. Peng, T. Ohkubo and D. E. Laughlin, Scripta mater. 48, 937 (2003).
【79】陳力俊,“材料電子顯微鏡學”, 1990.
【80】B. D. Cullity, “Element of X-ray Diffraction”,second edition, Massachusetts: Addison-Wesley, 1978.
【81】M. K. Minor, B. Viala, and J. A. Barnard, J. Appl. Phys. 79, 5005 (1996).
【82】H. S. Peiser, M. A., A. R. I. C., F. Inst. P., “X-ray Diffraction by Polycrystalline Materials”,1955.
【83】J. S. Reed, “Principles of Ceramics Processing”, second edition, John Willy & Sons, Inc, 1995.
【84】Z. G. Zhang, K. Kang, T. Suzuki, Appl. Phys. Lett. 83, 1785 (2003)
【85】T. Suzuki, T. Takanori, N. Honda, K. Ouchi, IEEE Trans. Magn. 36, 2417 (2000).
【86】A. C. Sun, J. H. Hsu, H. L. Huang, P. C. Kuo, J. Magn. Magn. Mater. 304, 106 (2006).
【87】S. C. Chen, P. C. Kuo, C. Y. Chou, and A. C. Sun, J. Appl. Phys. 97, 10N107 (2005).
【88】J. A. Thornton, J. Vac. Sci. Technol., 12, 830 (1974).
【89】J. J. Sun, R. C. Sousa, T. T. P. Galvao, V. Soares, T. S. Plaskett, and P. P. Freitas, J. Appl. Phys. 83, 6694 (1998).
【90】R. J. M. van de Veerdonk, J. Nowak, R. Meservey, J. S. Moodera, and W. J. M. de Jonge, Appl. Phys. Lett. 71, 2839 (1997).
【91】J. S. Moodera, L. R. Kinder, J. Nowak, P. LeClair, and R. Meservey, Appl. Phys. Lett. 69 708 (1996).
【92】M. Munakata, S. I. Aoqui, and M. Yagi, IEEE Trans. Magn. 41 3262 (2005).
【93】S. Cardoso, C. Cavaco, R. Ferreira, L. Pereira, M. Rickart, P. P. Freitas, N. Franco, J. Gouveia, and N. P. Barradas, J. Appl. Phys. 97, 10C916 (2005).
【94】J. C. Simmons, J. Appl. Phys. 34, 2581 (1963).
【95】K.I. Lee, J.H. Lee, W.Y. Lee, K.W. Rhie, J.G. Ha, C.S. Kim, and K.H. Shin, J. Magn. Magn. Mater. 239, 120 (2002).
【96】P. V. Paluskar, J. T. Kohlhepp, H. J. M. Swagten, and B. Koopmans, J. Appl. Phys. 99, 08E503 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top