跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 05:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏志銘
研究生(外文):Chih-Ming Wei
論文名稱:矽/鍺量子點之光學性質研究
論文名稱(外文):Optical Properties of Si/Ge Quamtum Dots
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:83
中文關鍵詞:量子點光學性質
外文關鍵詞:SiGequantum dotsoptical properties
相關次數:
  • 被引用被引用:1
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們將會把對矽/鍺量子點所作的光學性質研究做一完整的整理分析與報告。
論文主要分為兩個部分。在第一部分中所呈現的是“自聚性鍺量子點的光學異向特性”,我們發現了該樣品的光激發螢光在[110]與[1-10]的兩個相互垂直的方向上展現了孑然不同的光譜。此外在此偏振化的光激發螢光光譜中可以顯現出更細微的光譜結構,這是在一般的光激發螢光光譜中所無法展現的。此種光激發螢光的光學異向特性主要是由於鍺量子點與週遭的矽在接面上的的鍵結方向所導致的現象。我們也指出利用量測偏振化的光激發螢光光譜的方法可以對第二類半導體在異質接面上的發光根本機制做一詳細的研究。
在第二部分所要呈現的則是不同堆疊層數與不同矽間隔的厚度這兩批矽/鍺量子點的光激發螢光光譜與拉曼散射光譜的分析研究。我們發現了隨著量子點的堆疊層數愈多,量子點中的矽鍺混合比例會提高。而愈厚的矽間隔會讓量子點中的矽鍺混合比例降低。此外,量子點中的矽鍺混合會使量子點所受到的壓縮應力減小。因此,此種矽鍺混合在成長量子點的過程中扮演了極重要的角色。在隨溫度變化的光激發螢光光譜中,峰值能量的位移主要是因為載子在量子點間重斬分佈的效應。而在隨激發光強度變化的光激發螢光光譜中,峰值能量的藍位移主要是因為在接面上能帶彎曲的效應所導致,這樣的一個特性也可以讓我們判定這些矽/鍺量子點是屬於第二類半導體。
We report a detailed study of optical properties of Si/Ge quantum dots (QDs).

In the first part, optical anisotropy has been studied in self-assembled Ge QDs. It is found that the photoluminescence (PL) spectrum polarized along [110] exhibits different features compared to that corresponding to [1-10] . Besides, the polarized PL spectrum is able to reveal the fine structure much more pronounced than that in unpolarized spectrum. The observed optical anisotropy is attributed to the inherent property of the orientation of chemical bonds at the interface between Ge QDs and surrounding Si matrix. We point out that the polarized PL spectroscopy provides a unique way to investigate the properties of radiative recombination processes reflecting the anisotropic characteristics of the interface for a type-II heterostructure.

In the second part, we have performed the PL and the Raman scattering measurements on the Ge QDs with different fold numbers and different Si spacer thickness. It is found that the more the stacked layers of Ge QDs are, the higher the degree of Si-Ge intermixing is. The thicker Si spacer of Ge QDs results in the lower degree of Si-Ge intermixing. The Si-Ge intermixing would lead to the relaxation of strain in Ge QDs. Therefore, the Si-Ge intermixing plays an important role during the overgrowth. The shift in the temperature-dependent PL spectra of Ge QDs is due to the redistribution of carriers among Ge QDs. The blueshift in the power-dependent PL spectra of Ge QDs is attributed to band bending effect and make us conclude that samples in this study are type-II heterostructures.
Contents

Chapter 1 Introduction …………………………………………………………… 1
Chapter 2 Theoretical Background …………………………………………… 7
2.1 Photoluminescence ……………………………………………………… 7
2.1.1 Principles and Applications of Photoluminescence ………………… 7
2.1.2 The Apparatus for Photoluminescence Measurement …………… 10
2.2 Optical Anisotropy of Semiconductor Heterostructures ………………… 12
2.2.1 An Overview of Optical Anisotropy of Semiconductor Heterotructures 12
2.2.2 The Apparatus for Optical Anisotropy Measurement …………… 14
2.3 Raman Scattering …………………………………………………………… 15
2.3.1 Principles of Raman Scattering ……………………………………… 15
2.3.2 The Apparatus for Raman Scattering Measurement ………………… 18
Chapter 3 Optical Anisotropy of Self-assembled Ge Quantum Dots ……… 33
3.1 Introduction ………………………………………………………………… 33
3.2 Experiments ………………………………………………………………… 35
3.3 Results and Discussion ……………………………………………………… 36
3.4 Summary ………………………………………………………………… 42


Chapter 4 Photoluminescence and Raman Scattering of
Self-assembled Ge Quantum Dots ………………………………… 58
4.1 Introduction ………………………………………………………………… 58
4.2 Experiments ………………………………………………………………… 59
4.3 Results and Discussion ……………………………………………………… 61
4.4 Summary ………………………………………………………………… 66
Chapter 5 Conclusion …………………………………………………………… 82
Chapter 1
1.L. Esaki and R. Tsu, IBM Research Note RC-2418 (1969).
2.J. C. Campbell, in Germanium Silicon: Physics and Materials: Optoelectronics in Silicon and Germanium Silicon, edited by R. Hull and J. C. Bean (Academic, San Diego, 1999) p. 347.
3.G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, Appl. Phys. Lett. 64, 2235 (1994).
4.J. Stimmer, A. Reittinger, J. F. Nutzel, G. Abstreiter, H. Holzbrecher, and C. Buchal, Appl. Phys. Lett. 68, 3290 (1996).
5.F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzo, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, Appl. Phys. Lett. 81, 3242 (2002).
6.B. Voigtländer, Surf. Sci. Rep. 43, 127 (2001).
7.O. G. Schmidt, C. Lange, and K. Eberl, Appl. Phys. Lett. 75, 1905 (1999).
8.T. Splett, K. Zinke, E. Petermann, H. Kasper, H. -J. Kibbel, and X. H. Herzog, IEEE Photonics Technol. Lett. 6, 59 (1994).
9.G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, Appl. Phys. Lett. 64, 2235 (1994).
10.R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, Appl. Phys. Lett. 66, 445 (1995).
11.T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. -M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, Appl. Phys. Lett. 77, 1822 (2000).


Chapter 2
1.R. A. Stradling and P. C. Klipstein, in Growth and Characterisation of Semiconductors (Hilger, 1990).
2.S. Perkowitz, in Optical Characterization of Semiconductors: Infrard, Raman, and Photoluminescence Spectroscopy (Academic Press, 1993).
3.H. Saito, K. Nishi, S. Sugou, and Y. Sugimoto, Appl. Phys. Lett 71, 590 (1997).
4.Y. Nabetani, T. Ishikawa, S. Noda, and A. Sasaki, J. Appl. Phys. 76, 347 (1994).
5.M. Henini, S. Sanguinetti, S. C. Fortina, E. Grilli, M. Guzzi, G. Panzarini L. C. Andreani, M. D. Upward, P. Moriarty, P. H. Beton, and L. Eaves, Phys. Rev. B 57, 6815 (1998).
6.V. Zwiller, L. Jarlskog, M. -E. Pistol, C. Pryor, P. Castrillo, W. Seifert, and L. Samuelson, Phys. Rev. B 63, 233301 (2001).
7.M. Sugisaki, H. -W. Ren, S. V. Nair, K. Nishi, S. Sugou, T. Okuno, and Y. Matsumoto, Phys. Rev. B 59, R5300 (1999).
8.U. Håkanson, V. Zwiller, M. K. -J. Johansson, T. Sass, and L. Samuelson, Appl. Phys. Lett. 82, 627 (2003).
9.A. V. Platonov, V. P. Kochereshko, E. L. Ivchenko, G. V. Mikhailov, D. R. Yakovlev, M. Keim, W. Osau, A. Waag, and G. Landwehr, Phys. Rev. Lett. 83, 3546 (1999).
10.M. Schmidt, M. Grün, S. Petillon, E. Kurtz, and C. Klingshirn, Appl. Phys. Lett. 77, 85 (2000).
11.W. S. Su, M. H. Ya, Y. S. Chiu, and Y. F. Chen, Phys. Rev. B 66, 113305 (2002).
12.Y. S. Chiu, M. H. Ya, W. S. Su, T. T. Chen, Y. F. Chen, and H. H. Lin, Appl. Phys. Lett. 81, 4943 (2002).
13.W. Yang, H. Lee, T. J. Johnson, P. C. Sercel and A. G. Norman, Phys. Rev. B 61, 2784 (2000).
14.S. Cortez, O. Krebs, P. Voisin and J. M. Gérard, Phys. Rev. B 63, 233306 (2001).
15.P. Y. Yu and M. Cardona, in Fundamentals of Semiconductors (Springer, 2001).
16.C. V. Raman, Nature 121, 619 (1928).


Chapter 3
1.J. C. Campbell, in Germanium Silicon: Physics and Materials: Optoelectronics in Silicon and Germanium Silicon, edited by R. Hull and J. C. Bean (Academic, San Diego, 1999), p. 347.
2.T. Splett, K. Zinke, E. Petermann, H. Kasper, H. -J. Kibbel, and X. H. Herzog, IEEE Photonics Technol. Lett. 6, 59 (1994).
3.G. Franzo, F. Priolo, S. Coffa, A. Polman, and A. Carnera, Appl. Phys. Lett. 64, 2235 (1994).
4.R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, Appl. Phys. Lett. 66, 445 (1995).
5.T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J. -M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, Appl. Phys. Lett. 77, 1822 (2000).
6.O. G. Schmidt and K. Eberl, Phys. Rev. B 61, 13721 (2000).
7.O. G. Schmidt, K. Eberl, O. Kienzle, F. Ernst, S. Christiansen, and H. P. Strunk, Mater. Sci. Eng. B 74, 248 (2000).
8.O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, Appl. Phys. Lett. 74, 1272 (1999).
9.V. Le Thanh, V. Yam, P. Boucaud, F. Fortuna, C. Ulysse, D. Bouchier, L. Vervoort, and J. -M. Lourtioz, Phys. Rev. B 60, 5851 (1999).
10.S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Thin Solid Films 321, 65 (1998).
11.P. J. Dean, J. R. Haynes, and W. F. Flood, Phys. Rev. 161, 711 (1967).
12.W. -H. Chang, W. -Y. Chen, A. -T. Chou, T. -M. Hsu, P. -S. Chen, Z. Pei, and L. -S. Lai, J. Appl. Phys. 93, 4999 (2003).
13.S. Fukatsu, Y. Mera, M. Inoue, K. Maeda, H. Akiyama, and H. Sakaki, Appl. Phys. Lett. 68, 1889 (1996).
14.V. Higgs, P. Kightley, P. J. Goodhew, and P. D. Augustus, Appl. Phys. Lett. 59, 829 (1991).
15.H. Saito, K. Nishi, S. Sugou, and Y. Sugimoto, Appl. Phys. Lett 71, 590 (1997).
16.Y. Nabetani, T. Ishikawa, S. Noda, and A. Sasaki, J. Appl. Phys. 76, 347 (1994).
17.M. Henini, S. Sanguinetti, S. C. Fortina, E. Grilli, M. Guzzi, G. Panzarini L. C. Andreani, M. D. Upward, P. Moriarty, P. H. Beton, and L. Eaves, Phys. Rev. B 57, 6815 (1998).
18.V. Zwiller, L. Jarlskog, M. -E. Pistol, C. Pryor, P. Castrillo, W. Seifert, and L. Samuelson, Phys. Rev. B 63, 233301 (2001).
19.W. Yang, H. Lee, T. J. Johnson, P. C. Sercel and A. G. Norman, Phys. Rev. B 61, 2784 (2000).
20.S. Cortez, O. Krebs, P. Voisin and J. M. Gérard, Phys. Rev. B 63, 233306 (2001).
21.C. H. Chen, W. H. Chen, Y. F. Chen, and T. Y. Lin, Appl. Phys. Lett. 83, 1770 (2003).
22.A. V. Platonov, V. P. Kochereshko, E. L. Ivchenko, G. V. Mikhailov, D. R. Yakovlev, M. Keim, W. Osau, A. Waag, and G. Landwehr, Phys. Rev. Lett. 83, 3546 (1999).
23.M. Schmidt, M. Grün, S. Petillon, E. Kurtz, and C. Klingshirn, Appl. Phys. Lett. 77, 85 (2000).
24.W. S. Su, M. H. Ya, Y. S. Chiu, and Y. F. Chen, Phys. Rev. B 66, 113305 (2002).
25.Y. S. Chiu, M. H. Ya, W. S. Su, T. T. Chen, Y. F. Chen, and H. H. Lin, Appl. Phys. Lett. 81, 4943 (2002).
26.G. Jin, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 83, 2847 (2003).
27.A. I. Yakimov, N. P. Stepina, A. V. Dvurechenskii, A. I. Nikiforov, and A. V. Nenashev, Phys. Rev. B 63, 045312 (2001).
28.J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and Kang L. Wang, Appl. Phys. Lett. 78, 1763 (2001).
29.Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 82, 4779 (2003).
30.J. Weber and M. I. Alonso, Phys. Rev. B 40, 5683 (1989).
31.M. V. Klein, in Light Scattering in Solid I, edited by M. Cardona (Springer, Berlin, Heidelberg, New York, 1983), p. 178.
32.C. Lang, D. J. H. Cockayne and D. Nguyen-Manh, Phys. Rev. B 72, 155328 (2005).
33.G. Katsaros, G. Costantini, M. Stoffel, R. Esteban, A. M. Bittner, A. Rastelli, U. Denker, O. G. Schmidt, and K. Kern, Phys. Rev. B 72, 195320 (2005).


Chapter 4
1.O. G. Schmidt and K. Eberl, Phys. Rev. B 61, 13721 (2000).
2.O. G. Schmidt, K. Eberl, O. Kienzle, F. Ernst, S. Christiansen, and H. P. Strunk, Mater. Sci. Eng. B 74, 248 (2000).
3.O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, Appl. Phys. Lett. 74, 1272 (1999).
4.V. Le Thanh, V. Yam, P. Boucaud, F. Fortuna, C. Ulysse, D. Bouchier, L. Vervoort, and J. -M. Lourtioz, Phys. Rev. B 60, 5851 (1999).
5.S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Thin Solid Films 321, 65 (1998).
6.P. J. Dean, J. R. Haynes, and W. F. Flood, Phys. Rev. 161, 711 (1967).
7.W. -H. Chang, W. -Y. Chen, A. -T. Chou, T. -M. Hsu, P. -S. Chen, Z. Pei, and L. -S. Lai, J. Appl. Phys. 93, 4999 (2003).
8.S. Fukatsu, Y. Mera, M. Inoue, K. Maeda, H. Akiyama, and H. Sakaki, Appl. Phys. Lett. 68, 1889 (1996).
9.V. Higgs, P. Kightley, P. J. Goodhew, and P. D. Augustus, Appl. Phys. Lett. 59, 829 (1991).
10.O. G. Schmidt, and K. Eberl, Phys. Rev. B 61, 13721 (2000).
11.Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, Phys. Rev. B 54, 11548 (1996).
12.J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 78, 1763 (2001).
13.M. Larsson, A. Elfving, P. O. Holtz, G. V. Hansson, and W. -X. Ni, Appl. Phys. Lett. 82, 4785 (2003).
14.A. A. Maksimov, S. V. Zaitsev, I. I. Tartakovskii, V. D. Kulakovskii, D. R. Yakovlev, W. Ossau, M. Keim, G. Reuscher, A. Waag, and G. Landwehr, Appl. Phys. Lett. 75, 1231 (1999).
15.A. V. Baranov, A. V. Fedorov, T. S. Perova, R. A. Moore, V. Yam, D. Bouchier, V. Le Thanh, and K. Berwick, Phys. Rev. B 73, 075322 (2006).
16.W. -H. Chang, W. -Y. Chen, A. -T. Chou, T. -M. Hsu, P. -S. Chen, Z. Pei, and L. -S. Lai, J. Appl. Phys. 93, 4999 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊