跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳純敏
研究生(外文):Chun- Ming Chen
論文名稱:澱粉糊精的物理性質與微波輔助之生產方法
論文名稱(外文):Physical Properties of Amylodextrin and a Microwave Assisted Method for its Production
指導教授:呂廷璋
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:94
中文關鍵詞:澱粉糊精酸修飾澱粉微波
外文關鍵詞:amylodextrinacid modified starchmicrowave
相關次數:
  • 被引用被引用:1
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
爲探討amylodextrin的性質並進一步修飾其特性。利用2.2N鹽酸於35℃下浸漬將玉米澱粉製備成amylodextrin,並觀察水解過程玉米澱粉顆粒的變化,發現當水解率為3.1%時直鏈澱粉及支鏈澱粉皆已經開始降解,並有一些小分子出現,隨水解時間增加,大分子逐漸被降解,至水解率為60.6%時,層析圖為單一狹窄波峰,數量平均聚合度為21、重量平均聚合度為25,其分子量多分散度為1.17;將amylodextrin用酵素去分支後以鏈長差異計算之平均鏈數為1.19,顯示amylodextrin主要為一短鏈,只有分子大小略有差異的直鏈分子。Amylodextrin的相轉移溫度範圍較原澱粉顆粒之糊化溫度廣,經annealing處理後,可使相轉移溫度提高,最初相轉移溫度由63.06℃增加至84.76℃;相轉移溫度範圍縮小,由42.42℃縮小至22.74℃,顯示經annealing處理可增強 amylodextrin的結晶結構,增加其熱穩定性; amylodextrin由於分散於水溶液中後為一牛頓流體,但添加於0.5%與1%之關華豆膠溶液中發現 amylodextrin會改變關華豆膠之流動性,顯示 amylodextrin與關華豆膠產生交互作用,可用來修飾膠體溶液之性質。由於製備 amylodextrin時,於35℃中之時間至少需八天以上,所以利用微波加熱原理製備 amylodextrin以縮短不均勻酸水解所需時間,並利用反應曲面法,以鹽酸濃度及加熱秒數兩種因子對多分散度、分子量及水解率的影響進行分析,顯示以鹽酸濃度在2~2.2N 範圍下,加熱時間在70~75秒範圍下,能得到聚合度為117~123,多分散度為1.30~1.36,水解率為59.5~66.15%的amylodextrin。
Amylodextrin was obtained by soaking corn starch in 2.2N HCl solution at 35℃for 8 days. Molecular-weight distribution of starch was
significantly changed, as ratio of hydrolyzed starch reached at 3.1%. Both
amylopectin and amylose degraded, and some low molecular- weight
amylodextrin presented, as acid hydrolysis proceeded. Amylodextrin used
for this study was harvested from batches of acid hydrolysis with average
of hydrolyzed starch ratio at 60.6%. Size-exclusion chromatogram of this
amylodextrin showed a narrow peak, and the number-average degree of
polymerization (DPn) and weight-average DP (DPw) were 21 and 25,
respectively, with polydispersity value being equaled to 1.17. The average
chain-number was 1.19 calculated from difference of chain-length of
amylodextrin before and after debranched reaction by isoamylase. The
results indicated that amylodextrin was an essential linear molecule with
narrow size distribution. Transition temperature of amylodextrin was
higher than gelatinization temperature of native corn starch. After
annealing, the transition temperature was increased from 63.1°C to
84.8°C; the transition temperature range was narrowed from 42.42°C to
22.74°C. It indicated that annealing promoted reorganization and
perfection of crystalline lamellae of amylodextrin. Amylodextrin
suspension was a Newtonian fluid. Addition of amylodextrin to 0.5% or
1% guar gum hydorcolloid caused a synergistic increase in viscosity. To
shorten the preparing time of amylodextrin, microwave heating was
employed to accelerate the heterogeneous acid hydrolysis. Amylodextrin
with 117~123 DP and 1.3~1.36 polydispersity could be obtained from
heating corn starch in 2.2N HCl for 70 ~ 75 seconds to hydrolyze 59.5 ~
66.2% of mass.
目 錄
摘要……………………………………………………….…………...II
Abstract……………………………………………………….……III
目錄…………………………………………………………………..…IV
圖次……………………………………………………………...…..VIII
表次………………………………………………………………......XI
壹、前言…………………………………………………..…….….……1
貳、文獻整理…………………………………………………………… 2
一、澱粉顆粒結構…………………………………………………...2
二、澱粉組成的成分………………………………………….….….5
(一) 直鏈澱粉………………………………………….….….….5
(二) 支鏈澱粉……………………………………………...…….6
三、澱粉分子排列變化………………………………………..….…8
(一)澱粉糊化……………………………………………....……8
(二)澱粉回凝……………………………………………...…….9
(三) 回火(annealing)……………………...……………………10
四、澱粉與多醣之交互作用………………………….….…..…..10
五、酸修飾澱粉……………………………….………..….……..12
(一)酸水解原理………………………………...…...……….12
(二)酸水解澱粉結構.......................................................…...16
(三)酸水解澱粉熱性質……………………...............………18
(四)酸水解澱粉的流變特性…………………………………18
六、結晶小球……………………………..………………………19
七、微波處理澱粉……………………………………………….21
(一)微波酸水解澱粉…………………………………...….…21
(二)微波…………………………………………………....…22
(三)微波加熱與傳統加熱之比較……………...……….……23
(四)影響微波加熱的因素…………………………...….……24
(五)微波的應用……………………………………….…...…24
參、材料與方法…………………………….…………..……………..26
一、材料及製備方法…………………………………..…………..26
(一)玉米澱粉………………………………………..….….…..26
(二)Amylodextrin之製造…………………….………..………26
(三)微波amylodextrin之製造………………………..………27
(四) 結晶小球…………………………………………..………28
二、分析方法……………………………………………..………..29
(一)Amylodextrin之水解曲線………………………..……..29
(二) Amylodextrin鏈長測定….......................…........….......30
1.膠體過濾層析法...............................................….........30
(1)樣品製備......................................................…..........30
(2)膠體過濾層析...............................................….........30
(3)平均聚合度測定…………………….…….……..…30
(4)藍價測定…………………………………………....31
2.高效能分子篩層析法………………………………….31
(1)樣品製備…………………………………….….…..31
(2)高效能分子篩層析系統……….……….…….…….32
(三)澱粉與amylodextrin之熱性質分析….…………………33
(四)Amylodextrin對關華豆膠流變性質之影響……….….....33
1. Flow sweep………………………………………….…..33
(1)樣品製備………………………………………….…....33
(2)分析方法………………………………………….……34
2. Temperature sweep……………………………….……..34
(1)樣品製備……………………………………………….34
(2)分析方法……………………………………………….35
(五)快速連續黏度測定………………………..…………...….35
(六)微波amylodextrin之水解率…………………………….36
(七)微波amylodextrin之鏈長測定………………………….36
肆、結果與討論…………………………………………………………38
一、澱粉顆粒之酸水解率……………………………...………38
二、水解過程玉米澱粉之分子量變化………….………...……40
三、Amylodextrin分子的微細結構……………….……….…46
四、Amylodextrin的熱特性……………………….………….53
(一) Annealing修飾…………………………….…….…...…53
(二) Amylodextrin分子重排熱特性……………….….….…56
五、Amylodextrin與多醣膠之交互作用………………….…58
(一)關華豆膠對 amylodextrin之熱特性影響……….…..…58
(二) Amylodextrin 對膠體流變性質之影響…………..….…60
1.動態流變儀分析………………………….………….….60
2.快速連續黏度儀分析…………………...………………67
六、微波酸修飾澱粉…………………………………………….72
(一)液體含量對水解的影響………………………….……….72
(二)不同鹽酸濃度及反應時間的影響………………………..73
(三)以反應曲面法尋求最適生產條件………………………..79
(四)微波酸修飾澱粉與 amylodextrin之比較………………..86
伍、結論…………………………………………………………………87
陸、參考文獻…………………………………………………………...89


























圖 次
圖一、澱粉顆粒結構................................................................................ 3
圖二、直鏈澱粉結構圖…………………………………………….…... 7
圖三、支鏈澱粉結構圖…….…………………………………………... 7
圖四、玉米及豆類澱粉酸水解曲線(2.2N HCl,35℃)…………….….. 13
圖五、玉米及豆類澱粉酸水解曲線log[100/(100-x)] vs.水解時間. 13
圖六、Naegeli amylodextrin可能的結構圖..................................... 14
圖七、Lintnerized starches可能的結構圖......................................14
圖八、澱粉顆粒中的支鏈澱粉不均勻酸水解…………………….…...15
圖九、酸水解澱粉層析圖(A)去分支前(B)去分支後(a)糯性玉米澱粉(b)天然玉米澱粉(c)小麥澱粉(d)碗豆澱粉 (e)高直鏈馬鈴薯澱粉(f)馬鈴薯澱粉.................…………………………………………….........17
圖十、不同酒精濃度下(0%,10%,20%,21%,23%,25%,30% 及40%)結晶小球X-ray繞射圖……….……………………………………………..20
圖十一、玉米澱粉於2.2N HCl中35℃下之水解曲線........................ 39
圖十二、玉米澱粉2.2N HCl、35℃下部分水解酸水解分子量分佈轉變情形(HW-55 gel)(A)天然玉米澱粉(B) 3.1%水解率(C) 9.6%水解率………………………………………………………………………..42
圖十三、玉米澱粉2.2N HCl、35℃下部分水解酸水解分子量分佈轉變情形(HW-55 gel)(D)30.5%水解率(E)60.6%水解率………..….….43
圖十四、玉米澱粉2.2N HCl、35℃下部分水解酸水解分子量分佈轉變情形(HW-55 gel)…………………………………….…………..….44
圖十五、玉米澱粉HPSEC層析圖(A)去分支前(GMPW colum)(B)去分支後(G3000+G2500+G2500 column)………...…………........………...….48
圖十六、水解率3.1%玉米澱粉HPSEC層析圖(A)去分支前(B)去分支後(G3000+G2500+G2500 column)……….………..………….……….49
圖十七、水解率9.6%玉米澱粉HPSEC層析圖(A)去分支前(B)去分支後(G3000+G2500+G2500 column).…………………..………………..50
圖十八、水解率30.45%玉米澱粉HPSEC層析圖(A)去分支前(B)去分支後(G3000+G2500+G2500 column)………..….…………..……….….51
圖十九、水解率60.6%玉米澱粉HPSEC層析圖(A)去分支前(B)去分支後(G3000+G2500+G2500 column).......................................................52
圖二十、不同含量澱粉糊精與關華豆膠的流動性質…..........…..……62
圖二十一、澱粉糊精和關華豆膠在加熱過程中貯存模數(G’)(A)與損耗模數(G’’)(B)……………………....…....……………………………65
圖二十二、澱粉糊精的損耗正切(tan d)之變化……………….……66
圖二十三、不同含量澱粉糊精與1% 關華豆膠的水合情形…………68
圖二十四、預水合膠體加入澱粉糊精黏度特性……………………...68
圖二十五、不同含量澱粉糊精與0.5%關華豆膠的黏度特性..…..........69
圖二十六、不同含量澱粉糊精與1%關華豆膠的黏度特性…............…70
圖二十七、天然玉米澱粉層析圖(HW-55 gel).....................................75
圖二十八、天然玉米澱粉與4N鹽酸的比例為1:1混合,微波加熱1分15秒產生的微波修飾澱粉之層析圖(HW-55 gel)….............…….75
圖二十九、HPSEC層析圖(A)天然玉米澱粉(B)微波修飾澱粉(乾燥狀態下2N HCl加熱 50sec)(C)微波修飾澱粉(乾燥狀態下3N HCl加熱 40sec)………………………………………...……………...…………77
圖三十、HPSEC層析圖(GMPW column)(A)微波修飾澱粉(乾燥狀態下2N HCl加熱 60sec)(B)烘箱35℃下製備的amylodextrin…........…78
圖三十一、不同鹽酸濃度與加熱時間對分子量變化的等高線圖與反應曲面圖……………………………………………………………..……83
圖三十二、不同鹽酸濃度與加熱時間對水解率變化的等高線圖與反應曲面圖.....................................................................................................84
圖三十三、不同鹽酸濃度與加熱時間對分散度變化的等高線圖與反應曲面圖……………………………………………………..……..……..85














表 次
表一、不同水解程度澱粉糊精聚合度變化情形....................................45
表二、澱粉糊精在不同水解率的微細結構............................................47
表三、澱粉糊精之熱特性及annealing的影響.....................................54
表四、澱粉糊精分子重排熱特性...........................................................57
表五、澱粉糊精加入關華豆膠之熱特性……............……......……….59
表六、澱粉糊精與關華豆膠之Herschel-Bulkley流動係數…………. 63
表七、不同含量澱粉糊精與不同含量關華豆膠之連續黏度指標.….71
表八、澱粉與酸液1:1的比例,在不同鹽酸濃度及加熱時間下的水解
率…………………………………………..……………………………74
表九、澱粉加酸液,過濾後,在不同鹽酸濃度及加熱時間下的分子量、分散度、水解澱粉率…………………………………………………..76
表十、反應曲面法探討鹽酸濃度、加熱時間對分子量、分散度及水解率的影響……………………………………………………………..81
表十一、分子量、分散度、水解率之變方分析……………….……..82
表十二、分子量、分散度、水解率之回歸係數……………………82
蔡敏惠 (2003)交鏈修飾對短鏈澱粉結晶小球特性之影響。國立台灣大學食品科技研究所碩士論文。

徐嫚謙 (2001)短鏈澱粉結晶小球的特性。國立台灣大學食品科技研究所碩士論文。

陳仲仁 (1999)微波加熱的原理、構造、應用與研究。食品工業月刊31(7):31-41.

張永欣 (1992)微波食品加工原理與應用。財團法人中華民國冷凍食品發展協會,台北市。

黃瑞美 (1981)微波加熱─原理與應用。P16-20。華正出版社,台北市。

Alloncle M, Lefebvre J, Llamas G, and Doublier JL. 1989. A rheological characterization of cereal starch-galatomannan mixtures. Cereal Chem. 66(2):90-93.

Bahnassey YA, and Breene WM, Paul S. 1994. Rapid Visco-Analyzer (RVA) Pasting Profiles of Wheat, Corn, waxy Corn, Tapioca and Amaranth Starches (A. hypochondriacus and A. cruentus) in the Presence of Konjac Flour, Gellan, Guar, Xanthan and Locust Bean Gums. Starch. 46:134-141.

Bertoft E. Lintnerization of two amylose-free starches of A- and B-crystalline types,respectively. Starch. 56: 167-180.

Biliaderis CG, Maurice Tj and Vose JR, 1981. Starch gelatinization phenomena studied by differential scanning calorimetry. J Food Sci. 45, 1669-1675.

Biliaderis CG, Grant DR, Vose JR. 1981. Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem. 58:502-507.

Buleon A, Duprat F. 1984. Single crystals of amylose with a low degree of polymerization. Carbohydr Polym. 4:161-173.

Buleon A, Colonna P, Planchot V, Ball S. 1998. Starch granules:structure and biosynthesis. Int. J. Biol Macromol. 23: 85-112.

Chaisawang M , Suphantharika M. 2005 Effects of guar gum and xanthan
additions on physical and rheological properties of cationic tapioca starch. Carbohydr Polym. 61: 288-295.

Chaisawang M , Suphantharika M. 2006. Pasting and rheological
properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocolloid. 20:641-649.

Christianson DD, Hodge JE, Osborne D and Detroy RW. 1981. Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum. Cereal Chem. 58(6):513-517.

Cooke D and Gidley MJ (1992). Loss of crystalline and molecular order during gelatinization. Orgin of the enthalpic transition. Carbohydr Res. 227:103-112.

Crochet P, Lagrave TB, Noel TR, Parker R and Ring SG. 2005. Starch crystal solubility and starch granule gelatinisation. Carbohydr Res. 340:107-113.

Donovan JW and Mape CJ. 1980. Multiple phase transition of starches and Negeli amylodextrins. Starch. 32: 190-193.

Dubois M, Gilles KK, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28: 350-356.

Franco CM.L, Cabral Ra. F, Tavares DQ. 2002.Structural and physico-
chemical characteristics of lintnerized native and sour Cassava starches. Starch. 54:469-475.

Gallant DJ, Bouchet B and Baldwin PM. 1997. Microscopy of starch:
1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym. 32:177-191.

Gerard C, Colnna P, Buleon A, Planchot V. 2002. Order in maize mutant starches revealed by mild acid hydrolysis. Carbohydr Polym . 48:131-141.

Gidley MJ. 1987. Factors affecting the crystalline type(A-C) of native starches and model compounds: a rationalization of observed effects in terms of polymorphic structures. Carbohydr Res 161:301-304.

Gidley MJ and Bulpin PV. 1989. Aggregation of amylose in aqueous systems: The effect of chain length on phase behavior and aggregation kinetics. Macromoleculars:22: 341-346.

Hoover R. 2000. Acid-treated starches. Food Rev Int. 16(3):369-392.

Helbert and Chanzy H. 1993. Morphological and structural features of amylose spherocrystals of A-type. Int J. Biol. Macromol. 15:183-187.

Hizukuri S. 1986. Polymodal distribution of chain length of amylopectins, and its significance. Carbohydr Res. 147:342-347.

Hizukuri S,Kaneko T and Takeda Y. 1983. Measurement of the chain length of amylopectin and its relevance to the origin or crystalline polymorphism of starch granules. Biochem Biophys Acta: 760, 188-191.

Jackson DS, Waniska RD, and Rooney LW, Lincoln NE. 1992. Molecular weight patterns of Naegeli amylodextrins. Starch. 44:59-61.

Jacobs H and Delcour JA. 1998. Hydrothermal Modifications of granular Starch, with Retention of the Granular Structure: A Review. J. Agric Food Chem. 46:2895-2905.

Jacobs H,Eerlingen RC, Rouseu N, Colonna P, Delcour JA. 1998. Acid hydrolysis of native and annealed wheat, potato and pea starches-DSC m3lting features and chain length distributions of lintnerised starches. Carbohydr Res. 308: 359-371.

Jane JL, Wong KS, McPherson AE. 1997. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr Res. 300: 219-227.

Jayakody L, Hoover R. 2002.The effect of lintnerization on cereal starch granules. Food Res Int. 35:665-680.

Jenkins PJ, Donald AM. 1997. The effect of acid hydrolysis on native starch granule structure. Starch. 49:262-267.

Jeroen J.G. van Soest and Johannes F. G. Vliegenthart. 1997.Crystallinity in starch plastics:consequences for material properties. TIBTECH. 15: 208-213.

Kainuma K, French D. 1971. Nageli amylodextrin and its relationship to starch granule strecture. I .Preparation and properties of amylodextrins from various starch types. Biopolymers. 10: 1673-1680.

Li K, Xia L, Li J, Pang J, Cao G, Xi Z. 2001. Salt-assisted acid hydrolysis of starch to D-glucose under microwave irradiation. Carbohydr
Res. 331: 9-12.


Liu, H., Eskin, N. A. M. & Cui, S. W. 2003. Interaction of wheat and rice starches with yellow mustard mucilage. Food Hydrocolloid: 17, 863-869.

Li JH, Vasanthan T, Rossnagel B, Hoover R. 2001. Starch from hull-less barley: II. Thermal, rheological and acid hydrolysis characteristics. Food Chem. 74: 407-415.

Manners DJ.1985. Some aspects of the structure of starch. Cereal foods World. 30:461-467.

Moore, C. O. “Chapter 19. Application of starches in foods”, in “Starch chemistry and Technology, 2nd.’Eds. R.L. Whistler,J.N. BeMiller and E. F. Paschall, Academic Press, New York 1984, 575-590.

Morrison WR, Tester RF, Snape CE Law R and Gidley MJ. 1993. Swelling and gelatinization of cereal starches.IV. Some effects of lipid-complexed amylase and free amylose in waxy and normal barley starches.Cereal Chem.70(4): 385-391.

Morrison WR and Karkalas J. 1990.In P.M.Dey(Ed.),Starch.Methods in plant biochemistry(vol. 2) Carbohydrates. (pp. 323-352).

Muhr AH, Blanshard JMV, Bates DR. 1984. The effect of Linterisation on wheat and potato starch granules. Carbohydr Polym. 4: 399-425.

Nakazawa Y, Wang YJ. 2003. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins. Carbohydr Res. 338: 2871-2882.

Oates CG. 1997. Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci Technol.81:175-181.

Osaka NI, Glover DV, Lafayette W, and Osaka HF. 1987.Properties of residual maize starches following acid hydrolysis. Starch. 39: 284-288.

Planchot V, Colonna P, Buleon A. 1997.Enzymatic hydrolysis of
α-glucan crystallites. Carbohydr Res. 298: 319-326.

Raja KC. 1994. Modified properties of lintnerized cassava and maize starches. Carbohydr Polym. 24: 85-90.

Ring SG, Miles MJ, Morris VJ and Turner R. 1987. Spherulitic crystallization of short chain amylose. Int. J. Biol. Macromol. 9:158-160.

Robin J.P., Mercier, C., Charbonniere, R, & Guilbot, A. 1974.Lintnterised starches Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51:389-406.

Singh N, Singh J, Kaur L, Sodhi NS, Gill BS. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 81: 219-231.

Shi X, BeMiller JN. 2002. Effects of food gums on viscosities of starch suspensions during pasting. Carbohydr Polym. 50: 7-18.

Srichuwong S , Candra TC , Mishima T , Isono N , Hisamatsu M.
2005 . Starches from different botanical sources I: Contribution of
amylopectin fine structure to thermal properties and enzyme
digestibility. Carbohydr Polym. 60: 529-538.

Sudhakar V, Singhal RS and Kulkarni PR. 1996. Starch-galactomannan interactions: functionality and rheological aspects. Food Chem. 55:259-264.

Takeda Y, Tomooka S ,Hizukuri S. 1993. Structures of branched and linear moleculars of rice amylase. Carbohydr Res. 246:267-272.

Tester RF, Jarkalas J, Qi X. 2004. Starch-composition,fine structure and architecture. J Cereal Sci. 39:151-165.

Tester RF, Debon SJ. 2000. Annealing of starch- a review. Int J Biol
Macromol. 27:1-12.

Thomas DJ, Atwell WA. 1999. Starch modification. In “Starches. Chap. 3. Thomas DJ, Atwell WA(Ed.) An Eagan Press Handbook.pp 25-30”.

Vandepuyye GE, Delcour JA. 2004. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydr Polym. 58:245-266.

Vermeylen R, Goderis B, Reynaers H, and Delcour JA. 2004. Amylopectin molecular structure refected in macromolecular organization of granular starch. Biomacromoleculars.5: 1775-1786.

Virtanen T, Autio K, Suortti T and Poutanen .1993. Heat-induced changes
in native and acid-modified oat starch pastes. J Cereal Sci . 17:137-145.

Waduge RN, Hoover R, Vasanthan T, Gao J, Li J. 2006. Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Res Int. 39: 59-77.

Wang YJ, Truong VD, Wang L. 2003. Strucutres and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr Polym. 52: 327-333.

Wang YJ, Wang L. 2001. Structures and physicochemical properties of acid –thinned corn, potato and rice starches. Starch. 53: 570-576.

Watanabe T, French D. 1980.Structure features of Naegeli amylodextrin
as indicated by enzymic degradation. Carbohydr Res. 84: 115-123.

Williamson G, Belshaw NJ, Self DJ, Noel TR, Ring SG, Cairns P, Morris VJ, Clark SA& Parker ML. 1992. Hydrolysis of A- and B- type crystalline polymorphs of starch byα-amylase,β-amylase and glucoamylase 1. Carbohydr Polym. 18: 179-187.

Yoo D, Kim C, Yoo B. 2005. Steady and dynamic shear rheology of rice starch-galactomannan mixtures. Starch. 57: 310-318.

Zobel HF, Argo, Illinois. 1988. Molecules to granules: A Comprehensive Starch Review. Starch. 40: 44-50.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top