跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅盛豐
研究生(外文):Sheng-Feng Luo
論文名稱:跳躍擴散模型下離散型障礙選擇權之評價
論文名稱(外文):Pricing Discrete Barrier Options Under A Jump-Diffusion Model
指導教授:傅承德傅承德引用關係
指導教授(外文):Cheng-Der Fuh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:財務金融學研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:40
中文關鍵詞:路徑相依選擇權泛涵型中央極限定理Siegmund的調整擴散逼近
外文關鍵詞:path-dependent optionsfunctional central limit theorem
相關次數:
  • 被引用被引用:2
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The payoff of a barrier option depends on whether a specified underlying asset price crosses a specified level (called a barrier) during the life of the option. Most models for pricing barrier options assume continuous monitoring of the barrier. However, in practice, many real contracts with barrier provisions specify discrete monitoring times. Such options are called discrete barrier options. Broadie et al. (1997) showed that discrete barrier options can be priced using continuous barrier formulas by applying a simple continuity correction to the barrier under the geometric Brownian motion setting. In this article, we focus on the connection between the discrete and continuous barrier options using the same method of correction to the barrier but under the constant jump diffusion model. The correction is justified theoretically by applying the techniques from sequential analysis, particularly Siegmund (1985). And we also give numerical results.
1 Introduction 1
2 Pricing Barrier Options 6
2.1 Continuous-monitoring case 6
2.2 Discrete-monitoring case 8
3 Proof of the Main Result 11
3.1 Distribution of 11
3.2 Some known results 14
3.3 Limit distribution of the overshoot and tau_t 16
3.4 Proof of Theorem 2.1 for the up-and-in put case 22
4 Numerical Results 26
5 Conclusion Remarks and Further Researches 37
References 38
Amin, K. I. (1993), “Jump diffusion option valuation in discrete time”, The Journal of Finance,
48, 1833–1863.
Boyarchenko, S. and S. Levendorski˘i (2002), “Barrier options and touch-and-out options under
regular L´evy processes of exponential type”, The Annals of Applied Probability, 12,
1261–1298.
Boyle, P., M. Broadie, and P. Glasserman (1997), “Monte Carlo methods for security pricing”,
Journal of Economic Dynamics and Control, 21, 1267–1321.
Broadie, M., P. Glasserman, and S. G. Kou (1997), “A continuity correction for discrete barrier
options”, Mathematical Finance, 7, 325–348.
(1999), “Connecting discrete and continuous path-dependent options”, Finance and
Stochastics, 3, 55–82.
Brockhaus, O., M. Farkas, A. Ferraris, D. Long, and M. Overhaus (2000), Equity Derivatives
and Market Risk Models, chap. 3, Risk Books.
Chernoff, H. (1965), “Sequential tests for the mean of a normal distribution IV (Discrete
case)”, The Annals of Mathematical Statistics, 36, 55–68.
Chuang, C. S. (1996), “Joint distributions of Brownian motion and its maximum, with a generalization
to correlated BM and applications to barrier options”, Statistics and Probability
Letters, 28, 81–90.
Durrett, R. (2004), Probability: Theory and Examples, Duxbury Press, 3 edn.
H¨orfelt, P. (2003), “Extension of the corrected barrier approximation by Broadie, Glasserman,
and Kou”, Finance and Stochastics, 7, 231–243.
Heynen, R. C. and H. M. Kat (1994), “Partial barrier options”, The Journal of Financial
Engineering, 3, 253–274.
Hull, J. C. (2005), Option, Futures, and Other Derivatives, chap. 22, Pearson Education, 6
edn.
Kou, S. G. (2003), “On pricing of discrete barrier options”, Statistica Sinica, 13, 955–964.
Kou, S. G., G. Petrella, and H. Wang (2005), “Pricing path-dependent options with jump risk
via Laplace transforms”, The Kyoto Economic Review, 74, 1–23.
Kou, S. G. and H. Wang (2004), “Option pricing under a double exponential jump diffusion
model”, Management Science, 50, 1178–1192.
Kunitomo, N. and M. Ikeda (1992), “Pricing options with curved boundaries”, Mathematical
Finance, 2, 275–298.
Leblanc, B. and M. Yor (1998), “L´evy processes in finance: a remedy to the non-stationarity
of continuous martingales”, Finance and Stochastics, 2, 399–408.
Merton, R. C. (1973), “Theory of rational option pricing”, The Bell Journal of Economics and
Management Science, 4, 141–183.
Nguyen-Ngoc, L. (2003), “Exotic options in general exponential L´evy models”, Prepublication,
submitted.
Overhaus, M., A Ferraris, T. Knudsen, R. Milward, L. Nguyen-Ngoc, and G. Schindlmayr
(2002), Equity Derivatives: Theory and Applications, chap. 3, Wiley.
Petrella, G. (2004), “An extension of the Euler Laplace transform inversion algorithm with
applications in option pricing”, Operations Research Letters, 32, 380–389.
Petrella, G. and S. Kou (2004), “Numerical pricing of discrete barrier and lookback options
via Laplace transforms”, Journal of Computational Finance, 8, 1–37.
Shreve, S. E. (2004), Stochastic Calculus for Finance II: Continuous-Time Models, chap. 11,
Springer.
Siegmund, D. (1985), Sequential Analysis: Tests and Confidence Intervals, New York:
Springer-Verlag.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top