跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 18:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳冠勳
研究生(外文):Guan-Hsun Wu
論文名稱:Caveolin-1調節γ-secretase的分子機制之研究
論文名稱(外文):The Molecular Mechanism DepictingCaveolin-1-elicited Regulation of γ-Secretase
指導教授:嚴震東嚴震東引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物學研究研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:54
中文關鍵詞:阿茲海默氏症蛋白質水解蛋白質沉澱蛋白質聚集
外文關鍵詞:amyloid-betagamma-secretasecaveolin-1caveolaelipid rafts
相關次數:
  • 被引用被引用:1
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
越來越多證據指出,amyloid-precursor protein (APP)的β以及γ的水解可能是發生在細胞膜上一種稱為lipid rafts 的特殊構造中,而caveolin-1 是此種構造上一個重要的結構蛋白。此外,在阿茲海默氏症病患腦部的海馬迴區域,caveolin-1的表現有上升的現象。這些結果都顯示caveolin-1 有可能參與在調節APP 的分解以及阿茲海默氏症的致病過程中。因此,我們嘗試去證明caveolin-1 在γ-secretase主導的蛋白質水解上扮演關鍵的角色。在本實驗中,我們觀察到在HEK293 細胞裡,大量表現的caveolin-1 會促進raft membrane 的形成以及刺激γ-secretase 對於APP 的分解。然而,在γ-secretase 的另外一個作用對象Notch 身上,偵測不到此種情況。這些結果顯示caveolin-1 可以調控γ-secretase 對於受質的選擇性。接著,利用MβCD 這種抽除膽固醇的藥物去破壞raft membrane,可以完全抑制caveolin-1 所增加的γ-secretase 活性,由此更進一步證明了細胞膜形成特殊結構這個現象。另外,我們還發現APP,nicastrin,和ERK 會與caveolin-1 共同出現在raft membrane 裡。同時,caveolin-1 被報導可以抑制ERK 的活化,而我們確實也發現caveolin-1 藉此間接地促進γ-secretase 對於APP 的水解作用。這正好可以呼應我們之前的研究結果:降低ERK 的活化可以增加γ-secretase 的活性。接下來,我們抑制dynamin-2 的表現來阻斷細胞內噬作用,觀察到caveolin-1 對於γ-secretase 的刺激作用有顯著的降低。最後,我們發現大量表現的caveolin-1 也
會增加Aβ的產生,而抑制細胞內噬作用,同樣可以阻止caveolin-1 造成的影響。總結來說,透過以上的研究,我們相信caveolin-1 在調節γ-secretase 分解APP 的活性以及阿茲海默氏症的致病過程上確實扮演了重要的角色。
Accumulated evidence has suggested that β- and γ-cleavage of amyloid precursor protein (APP) may take place in specialized membrane microdomains called lipid
rafts. Caveolin-1 is an important structure protein of this membrane domain, and its expression in the hippocampus region of Alzheimer’s disease patients’ brains is upregulated. These data all imply that caveoiln-1 could play a role in modulating the proteolytic processing of APP and the pathogenesis of Alzheimer’s disease. We thus seek to determine whether caveolin-1 can actively involve in the regulation of γ-secretase-mediated proteolysis. In this study, we observe that overexpression of caveolin-1 promotes the formation of raft-membranes in HEK293 cells and concomitantly stimulates γ-secretase-mediated cleavage of APP. However, the γ-secretase-mediated S3 cleavage of Notch, another substrate of γ-secretase, is not affected by the overexpression of caveolin-1, suggesting that substrate selectivity of
γ-secretase can be modulated by caveolin-1. Consistently, the caveolin-1-enhanced γ-secretase activity can be completely abolished by a cholesterol-depleting drug called
MβCD that also destabilizes the raft membranes. This strengthen the notion that caveolin-1 can promote the formation of raft membrane. We further confirm that APP,
nicastrin, and ERK are co-localized with caveolin-1 in raft membranes. Caveolin-1 is also known to be a scaffold protein that can suppress ERK activation. In caveolin-1-overexpressed cells, the evidence that the suppression of ERK activation is prominent in accordance to our previous findings that down-regulation of ERK can promote γ-secretase activity. And then, the down-regulation of dynamin-2, a critical component of endocytosis, results in a significant decrease in caveolin-1-enhanced γ-secretase activity. Finally, we discover that overexpression of caveolin-1 also can increases Aβ production, and inhibition of endocytosis blocks this effect. Together,
the present study strongly suggests that caveolin-1 plays an important role in the regulation of γ-secretase-catalyzed proteolysis of APP and may exacerbate the
pathogenesis of Alzheimer’s disease.
Table of contents I
List of Figures III
摘要 1
Abstract 3
Introduction 5
Alzheimer’s disease 5
Aβ generation and γ-secretase 6
Lipid rafts and secretase-mediated proteolysis of APP 9
Caveolin and its relationship with AD 10
Objectives and hypothesis 12
Materials and methods 14
Reagents 14
Cell culture 15
Generation of DNA Constructs 15
Transient transfection of mammalian cells 16
Cell-based γ-secretase assays 16
SDS-Polyacrylamide Gel Electrophoresis and Western Blot Analysis 18
Transfection of small interfering RNAs (siRNAs) targeting dynamin-2 19
Aβ ELISA 20
Membrane fractionation 20
Results 23
The expression of exogenous caveolin-1 facilitates the formation of raft-membranes 23
Overxepression of caveolin-1 increases γ-secretase-mediated cleavage of APP, while Notch processing seems unchanged. 24
Caveolin-1-induced formation of raft microdomains is a structurally critical for the enhancement of γ-secretase activity and the recruitment of this protease and APP 25
Endocytosis plays a crucial role in the caveolin-1-elicited stimulation of γ -secretase activity 27
Discussion 30
Differential processing between APP and Notch 30
Caveolin-1-mediated endocytosis and APP proteolysis 32
Aβ production 33
Summary 34
Reference 35
List of Figures
Figure 1. Tetracycline-inducible expression of caveolin-1 and the quantitative measurement of γ-secretase activity. 43
Figure 2. The tetracycline-inducible expression of caveolin-1 is functional in the formation of raft-membranes. 44
Figure 3. Overxepression of caveolin-1 increases γ-secretase-mediated cleavage of APP. 45
Figure 4. Overexpression of caveolin-1 dose not affect Notch processing. 47
Figure 5. Cholesterol depletion completely abolishes caveolin-1-induced γ-secretase activity. 48
Figure 6. Overexpression of caveolin-1 recruits APP, mature nicastrin, and ERK into raft-fraction. 49
Figure 7. Overexpression of caveolin-1 suppresses ERK activation. 50
Figure 8. Inhibition of endocytosis decreases caveolin-1-stimulated γ-secretase activity. 52
Figure 9. Overexprssion of caveolin-1 increases extracellular Aβ, which can be blocked by the inhibition of endocytosis. 53
Figure 10. Model for the molecular mechanisms depicting caveolin-1-elicited regulation of γ-secretase. 54
Bist, A., Fielding, P. E., and Fielding, C. J. (1997). Two sterol regulatory element-like
sequences mediate up-regulation of caveolin gene transcription in response to low
density lipoprotein free cholesterol. Proc Natl Acad Sci U S A 94, 10693-10698.
Cam, J. A., Zerbinatti, C. V., Li, Y., and Bu, G. (2005). Rapid endocytosis of the low
density lipoprotein receptor-related protein modulates cell surface distribution and
processing of the beta-amyloid precursor protein. J Biol Chem 280, 15464-15470.
Capell, A., Grunberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., Beyreuther,
K., Selkoe, D. J., and Haass, C. (1998). The proteolytic fragments of the Alzheimer''s
disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa
molecular mass complex. J Biol Chem 273, 3205-3211.
del Pozo, M. A., Balasubramanian, N., Alderson, N. B., Kiosses, W. B.,
Grande-Garcia, A., Anderson, R. G., and Schwartz, M. A. (2005). Phospho-caveolin-1
mediates integrin-regulated membrane domain internalization. Nat Cell Biol 7,
901-908.
Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V., and Simons, K. (1993).
Caveolae and sorting in the trans-Golgi network of epithelial cells. Embo J 12,
1597-1605.
Edbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H., and Haass, C. (2003).
Reconstitution of gamma-secretase activity. Nat Cell Biol 5, 486-488.
Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003). Amyloidogenic
processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J
Cell Biol 160, 113-123.
Engelman, J. A., Chu, C., Lin, A., Jo, H., Ikezu, T., Okamoto, T., Kohtz, D. S., and
Lisanti, M. P. (1998). Caveolin-mediated regulation of signaling along the p42/44
MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett
428, 205-211.
Fielding, C. J., Bist, A., and Fielding, P. E. (1997). Caveolin mRNA levels are
up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast
36
monolayers. Proc Natl Acad Sci U S A 94, 3753-3758.
Frank, P. G., Marcel, Y. L., Connelly, M. A., Lublin, D. M., Franklin, V., Williams, D.
L., and Lisanti, M. P. (2002). Stabilization of caveolin-1 by cellular cholesterol and
scavenger receptor class B type I. Biochemistry 41, 11931-11940.
Fujita, Y., Maruyama, S., Kogo, H., Matsuo, S., and Fujimoto, T. (2004). Caveolin-1
in mesangial cells suppresses MAP kinase activation and cell proliferation induced by
bFGF and PDGF. Kidney Int 66, 1794-1804.
Galbiati, F., Engelman, J. A., Volonte, D., Zhang, X. L., Minetti, C., Li, M., Hou, H.,
Jr., Kneitz, B., Edelmann, W., and Lisanti, M. P. (2001). Caveolin-3 null mice show a
loss of caveolae, changes in the microdomain distribution of the
dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276,
21425-21433.
Gaudreault, S. B., Dea, D., and Poirier, J. (2004). Increased caveolin-1 expression in
Alzheimer''s disease brain. Neurobiol Aging 25, 753-759.
Gowing, E., Roher, A. E., Woods, A. S., Cotter, R. J., Chaney, M., Little, S. P., and
Ball, M. J. (1994). Chemical characterization of A beta 17-42 peptide, a component of
diffuse amyloid deposits of Alzheimer disease. J Biol Chem 269, 10987-10990.
Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., and Binder,
L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau)
in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83, 4913-4917.
Haass, C., Hung, A. Y., Schlossmacher, M. G., Teplow, D. B., and Selkoe, D. J.
(1993). beta-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular
mechanisms. J Biol Chem 268, 3021-3024.
Haass, C., Hung, A. Y., and Selkoe, D. J. (1991). Processing of beta-amyloid
precursor protein in microglia and astrocytes favors an internal localization over
constitutive secretion. J Neurosci 11, 3783-3793.
Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A.,
Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., and et al.
(1992). Amyloid beta-peptide is produced by cultured cells during normal metabolism.
37
Nature 359, 322-325.
Henley, J. R., Krueger, E. W., Oswald, B. J., and McNiven, M. A. (1998).
Dynamin-mediated internalization of caveolae. J Cell Biol 141, 85-99.
Hu, Y., and Fortini, M. E. (2003). Different cofactor activities in gamma-secretase
assembly: evidence for a nicastrin-Aph-1 subcomplex. J Cell Biol 161, 685-690.
Ikonen, E. (2001). Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13,
470-477.
Iwatsubo, T. (2004). The gamma-secretase complex: machinery for intramembrane
proteolysis. Curr Opin Neurobiol 14, 379-383.
Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K.
H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987). The precursor of
Alzheimer''s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325,
733-736.
Kim, S. K., Park, H. J., Hong, H. S., Baik, E. J., Jung, M. W., and Mook-Jung, I.
(2006). ERK1/2 is an endogenous negative regulator of the gamma-secretase activity.
Faseb J 20, 157-159.
Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., and
Selkoe, D. J. (2003). Gamma-secretase is a membrane protein complex comprised of
presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100, 6382-6387.
Klein, U., Gimpl, G., and Fahrenholz, F. (1995). Alteration of the myometrial plasma
membrane cholesterol content with beta-cyclodextrin modulates the binding affinity
of the oxytocin receptor. Biochemistry 34, 13784-13793.
Kopan, R., and Ilagan, M. X. (2004). Gamma-secretase: proteasome of the membrane?
Nat Rev Mol Cell Biol 5, 499-504.
Kosik, K. S., Joachim, C. L., and Selkoe, D. J. (1986). Microtubule-associated protein
tau (tau) is a major antigenic component of paired helical filaments in Alzheimer
disease. Proc Natl Acad Sci U S A 83, 4044-4048.
38
LaVoie, M. J., Fraering, P. C., Ostaszewski, B. L., Ye, W., Kimberly, W. T., Wolfe,
M. S., and Selkoe, D. J. (2003). Assembly of the gamma-secretase complex involves
early formation of an intermediate subcomplex of Aph-1 and nicastrin. J Biol Chem
278, 37213-37222.
Lee, M. S., Kwon, Y. T., Li, M., Peng, J., Friedlander, R. M., and Tsai, L. H. (2000).
Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360-364.
Lee, S. J., Liyanage, U., Bickel, P. E., Xia, W., Lansbury, P. T., Jr., and Kosik, K. S.
(1998). A detergent-insoluble membrane compartment contains A beta in vivo. Nat
Med 4, 730-734.
Lemere, C. A., Blusztajn, J. K., Yamaguchi, H., Wisniewski, T., Saido, T. C., and
Selkoe, D. J. (1996). Sequence of deposition of heterogeneous amyloid beta-peptides
and APO E in Down syndrome: implications for initial events in amyloid plaque
formation. Neurobiol Dis 3, 16-32.
Li, S., Song, K. S., Koh, S. S., Kikuchi, A., and Lisanti, M. P. (1996).
Baculovirus-based expression of mammalian caveolin in Sf21 insect cells. A model
system for the biochemical and morphological study of caveolae biogenesis. J Biol
Chem 271, 28647-28654.
Liao, Y. F., Wang, B. J., Cheng, H. T., Kuo, L. H., and Wolfe, M. S. (2004). Tumor
necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate
gamma-secretase-mediated cleavage of amyloid precursor protein through a
JNK-dependent MAPK pathway. J Biol Chem 279, 49523-49532.
Martins, I. J., Hone, E., Foster, J. K., Sunram-Lea, S. I., Gnjec, A., Fuller, S. J., Nolan,
D., Gandy, S. E., and Martins, R. N. (2006). Apolipoprotein E, cholesterol
metabolism, diabetes, and the convergence of risk factors for Alzheimer''s disease and
cardiovascular disease. Mol Psychiatry.
Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and
Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down
syndrome. Proc Natl Acad Sci U S A 82, 4245-4249.
Nishiyama, K., Trapp, B. D., Ikezu, T., Ransohoff, R. M., Tomita, T., Iwatsubo, T.,
Kanazawa, I., Hsiao, K. K., Lisanti, M. P., and Okamoto, T. (1999). Caveolin-3
39
upregulation activates beta-secretase-mediated cleavage of the amyloid precursor
protein in Alzheimer''s disease. J Neurosci 19, 6538-6548.
Nukina, N., and Ihara, Y. (1986). One of the antigenic determinants of paired helical
filaments is related to tau protein. J Biochem (Tokyo) 99, 1541-1544.
Oh, P., McIntosh, D. P., and Schnitzer, J. E. (1998). Dynamin at the neck of caveolae
mediates their budding to form transport vesicles by GTP-driven fission from the
plasma membrane of endothelium. J Cell Biol 141, 101-114.
Patrick, G. N., Zukerberg, L., Nikolic, M., de la Monte, S., Dikkes, P., and Tsai, L. H.
(1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes
neurodegeneration. Nature 402, 615-622.
Razani, B., Wang, X. B., Engelman, J. A., Battista, M., Lagaud, G., Zhang, X. L.,
Kneitz, B., Hou, H., Jr., Christ, G. J., Edelmann, W., and Lisanti, M. P. (2002).
Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without
disruption of caveolae. Mol Cell Biol 22, 2329-2344.
Scherer, P. E., Lisanti, M. P., Baldini, G., Sargiacomo, M., Mastick, C. C., and Lodish,
H. F. (1994). Induction of caveolin during adipogenesis and association of GLUT4
with caveolin-rich vesicles. J Cell Biol 127, 1233-1243.
Scherer, P. E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H. F., and Lisanti, M. P.
(1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene
family. Proc Natl Acad Sci U S A 93, 131-135.
Selkoe, D., and Kopan, R. (2003). Notch and Presenilin: regulated intramembrane
proteolysis links development and degeneration. Annu Rev Neurosci 26, 565-597.
Selkoe, D. J., Podlisny, M. B., Joachim, C. L., Vickers, E. A., Lee, G., Fritz, L. C.,
and Oltersdorf, T. (1988). Beta-amyloid precursor protein of Alzheimer disease
occurs as 110- to 135-kilodalton membrane-associated proteins in neural and
nonneural tissues. Proc Natl Acad Sci U S A 85, 7341-7345.
Seubert, P., Oltersdorf, T., Lee, M. G., Barbour, R., Blomquist, C., Davis, D. L.,
Bryant, K., Fritz, L. C., Galasko, D., Thal, L. J., and et al. (1993). Secretion of
beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid
40
peptide. Nature 361, 260-263.
Shah, S., Lee, S. F., Tabuchi, K., Hao, Y. H., Yu, C., LaPlant, Q., Ball, H., Dann, C.
E., 3rd, Sudhof, T., and Yu, G. (2005). Nicastrin functions as a
gamma-secretase-substrate receptor. Cell 122, 435-447.
Simons, K., and Toomre, D. (2000). Lipid rafts and signal transduction. Nat Rev Mol
Cell Biol 1, 31-39.
Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., and Price, D. L. (1990).
Evidence that beta-amyloid protein in Alzheimer''s disease is not derived by normal
processing. Science 248, 492-495.
Sodhi, C. P., Rampalli, S., Perez, R. G., Koo, E. H., Quinn, B., and Gottardi-Littell, N.
R. (2004). The endocytotic pathway is required for increased A beta 42 secretion
during apoptosis. Brain Res Mol Brain Res 128, 201-211.
Soriano, S., Chyung, A. S., Chen, X., Stokin, G. B., Lee, V. M., and Koo, E. H.
(1999). Expression of beta-amyloid precursor protein-CD3gamma chimeras to
demonstrate the selective generation of amyloid beta(1-40) and amyloid beta(1-42)
peptides within secretory and endocytic compartments. J Biol Chem 274,
32295-32300.
Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M., Niimura, M., Takahashi, Y.,
Thinakaran, G., and Iwatsubo, T. (2003). The role of presenilin cofactors in the
gamma-secretase complex. Nature 422, 438-441.
Tang, Z., Scherer, P. E., Okamoto, T., Song, K., Chu, C., Kohtz, D. S., Nishimoto, I.,
Lodish, H. F., and Lisanti, M. P. (1996). Molecular cloning of caveolin-3, a novel
member of the caveolin gene family expressed predominantly in muscle. J Biol Chem
271, 2255-2261.
Tanzi, R. E., and Bertram, L. (2001). New frontiers in Alzheimer''s disease genetics.
Neuron 32, 181-184.
Terry, R. D., Hansen, L. A., DeTeresa, R., Davies, P., Tobias, H., and Katzman, R.
(1987). Senile dementia of the Alzheimer type without neocortical neurofibrillary
tangles. J Neuropathol Exp Neurol 46, 262-268.
41
Thinakaran, G., Borchelt, D. R., Lee, M. K., Slunt, H. H., Spitzer, L., Kim, G.,
Ratovitsky, T., Davenport, F., Nordstedt, C., Seeger, M., et al. (1996).
Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo.
Neuron 17, 181-190.
Vassar, R. (2004). BACE1: the beta-secretase enzyme in Alzheimer''s disease. J Mol
Neurosci 23, 105-114.
Vetrivel, K. S., Cheng, H., Kim, S. H., Chen, Y., Barnes, N. Y., Parent, A. T., Sisodia,
S. S., and Thinakaran, G. (2005). Spatial segregation of gamma-secretase and
substrates in distinct membrane domains. J Biol Chem 280, 25892-25900.
Vetrivel, K. S., Cheng, H., Lin, W., Sakurai, T., Li, T., Nukina, N., Wong, P. C., Xu,
H., and Thinakaran, G. (2004). Association of gamma-secretase with lipid rafts in
post-Golgi and endosome membranes. J Biol Chem 279, 44945-44954.
Wahrle, S., Das, P., Nyborg, A. C., McLendon, C., Shoji, M., Kawarabayashi, T.,
Younkin, L. H., Younkin, S. G., and Golde, T. E. (2002). Cholesterol-dependent
gamma-secretase activity in buoyant cholesterol-rich membrane microdomains.
Neurobiol Dis 9, 11-23.
Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., and Selkoe,
D. J. (1999). Two transmembrane aspartates in presenilin-1 required for presenilin
endoproteolysis and gamma-secretase activity. Nature 398, 513-517.
Xia, W., and Wolfe, M. S. (2003). Intramembrane proteolysis by presenilin and
presenilin-like proteases. J Cell Sci 116, 2839-2844.
Yao, Q., Chen, J., Cao, H., Orth, J. D., McCaffery, J. M., Stan, R. V., and McNiven,
M. A. (2005). Caveolin-1 interacts directly with dynamin-2. J Mol Biol 348, 491-501.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top