跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林明宏
研究生(外文):Ming-Hung Lin
論文名稱:時間反轉陣列之聚焦解析度分析
論文名稱(外文):Analysis of focal resolution for time-reversal arrays
指導教授:陳琪芳陳琪芳引用關係
指導教授(外文):Chi-Fang Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:78
中文關鍵詞:水下通訊時間反轉法聚焦解析度交互相關性函數
外文關鍵詞:Underwater communicationTime-reversal processingFocal resolutionCross-Correlation Function
相關次數:
  • 被引用被引用:7
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在水下通訊領域,近年來已應用時間反轉法於處理水下聲訊,時間反轉法為利用聲波時反回傳訊號的不變性,來補償水下環境變化而產生訊號的失真(distortion)。本篇論文主要目的為探討聚焦解析度(空間及時域解析度)與時間反轉陣列中拍發聲源數目及位置之關係。在低頻部分,吾人模擬一靜態水文波導環境,傳輸低頻聲訊由時間反轉陣列接收並拍發,在發射端接收聚焦訊號且進行分析。在高頻部分,由八支B&K-8104水下麥克風組成時間反轉陣列,實驗地點於本系拖車水槽,證明時反法聲訊的聚焦性,應用虛像法模擬水槽環境做聲訊之比較,並且由交互相關性函數量化分析時反陣列元件位置與其聚焦結構的變化。其計算結果有助於國內未來建立時反陣列的最佳化,並達到應用於水下通訊之可適性。
Time-reversal processing is developed to enhance underwater acoustic communication in recent years. This technique has been introduced as an approach to compensate for distortion due to multiple path effect in propagation. In this thesis, the main objective is to analyze focal resolution (spatial and temporal resolution) and its relationship with element-number and the position of the time-reversal array. In the low-frequency part, simulation results of low-frequency signals received by the time-reversal array and retransmitted back to the source location are presented. In the high-frequency part, the time-reversal array is constructed with eight B&K-8104 hydrophones, and a NTU-ESOE water tank experiment is conducted to refocus signal. The experiment is also simulated using the image method to analyse the relation between the element position and the focal structure with cross-correlation function. The results of this research can help to provide the optimal design in building time-reversal array in the future.
致謝及感言 I
中文摘要 II
Abstract III
目錄 IV
圖表目錄 VI
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.3 研究目的與方法 4
1.4 論文架構 5
1.5 論文架構 6
第二章 基礎理論 7
2.1時間反轉鏡理論推導 7
2.2時間反轉鏡聚焦位置證明 10
第三章 數值模擬及算例 13
3.1 模擬聲源與環境設定 13
3.2 模組頻散(Mode Dispersion) 14
3.3 模擬算例 17
第四章 水槽實驗與分析 24
4.1 水聽器校正實驗 24
4.1.1 校正結果 25
4.2 時間反轉鏡實驗 26
4.2.1 實驗儀器配置 26
4.2.2 實驗設定與步驟 28
4.3 實驗結果 30
4.3.1 水槽實驗聲訊聚焦證明 30
4.3.2 虛像法水槽環境模擬 40
4.3.3 交互相關性函數量化分析 49
第五章 結論與未來工作 55
參考文獻 57
附錄A 水聽器校正[12] 60
A.1 水聽器校正公式推導 60
A.2 水聽器校正儀器 63
A.3 水聽器校正步驟 67
附錄B 資料擷取程式 69
附錄C 聲壓值校正程式 74
附錄D 聲源設計程式 76
附錄E 校正值加入程式 77
[1]Fink, Mathias., “Time-Reversed Acoustics,” Sci. American, Vol. 281, Issue 5, pp. 91-97, Nov.1999.
[2]B. Y. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, “Principles of Phase Conjugation ,” Springer-Verlag, Berlin, 1985.
[3]M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self-focusing with time reversal mirror in inhomogeneous media, ” Proc. IEEE Ultrason Symp.1989 Montreal 2, pp. 681-686, 1989.
[4]D. R. Jackson and D. R. Dowling, “Phase conjugation in underwater acoustics, ” J. Acoust. Soc. Am. 89, pp. 171-181, 1991.
[5]W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson. “Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror,” J. Acoust. Soc. Am., vol. 103, pp. 25-40, 1998.
[6]H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, “A time-reversal mirror with variable range focusing,” J. Acoust. Soc. Am. 103, pp. 3234-3240, 1998.
[7]W. S. Hodgkiss, H. C. Song, W. A. Kuperman, T. Akal, C. Ferla, and D. R. Jackson, “A long range and variable focus phase conjugation experiment in shallow water,” J. Acoust. Soc. Am. 105, pp. 1597-1604, 1999.
[8]S. Kim, W. A. Kuperman, W. S. Hodgkiss, H. C. Song, G. F. Edelmann and T. Akal, “Robust time reversal focusing in the ocean,” J. Acoust. Soc. Am. 14(1), pp.145-157, 2003.
[9]Roux, P., Kuperman, W.A., Hodgkiss, W.S., Song, H.C., Akal, T., and Stevenson, M., “A Non-Reciprocal Implementation of Time Reversal in the Ocean,” J. Acoust. Soc. Am. 116, pp. 1009-1015, 2004.
[10]Kim, S., Kuperman, W.A., Hodgkiss, W.S., Song, H.C., Edelmann, G., and Akal, T., “Echo-to-Reverberation Enhancement Using a Time Reversal Mirror,” J. Acoust. Soc. Am. 115, 1525-1531, 2004.
[11]Song, H.C., Kim, S., Hodgkiss, W.S., and Kuperman, W.A., “Environmentally Adaptive Reverberation Nulling Using a Time Reversal Mirror,” J. Acoust. Soc. Am. 116, 763-768, 2004.
[12]謝傳璋彙編(1976.8.)。Fundamentals of Marine Acoustics。國立台灣大學九十三學年度第二學期。工程科學及海洋工程學系碩士
班。「水下聲學」教學講義。
[13]G. V. Frisk, “Ocean and Seabed Acoustics:A theory of wave propagation,” Prentice Hall, New Jersey, 1994.
[14]F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “Computational Ocean Acoustics,” American Institute of Physics, New York, 1994.
[15]Product Data: Hydrophones - Types 8103, 8104, 8105, 8106
檢索日期:95.3.12。取自 World Wide Web:http://www.bksv.com/pdf/Bp0317.pdf
[16]D.E Newland, “An introduction to random vibrations, spectral and wavelet Analysis,” 3rd Edition, Wiley, New York, 1993.
[17]Doaglas C. Montgometry, Geotege C. Runger, “Applied Statistics and Probability for Engineers,” John Wiley & Sons, New York, 1994
[18]Richard A. Johnson, Miller, “Freund’s Probability and Statistics for Engineers,” 5th Edition, Prentice-Hall, New Jersey, 1994.
[19]Robert J. Urick, “Principle of Underwater Sound,” 3th Edition, McGraw-Hill Book Company, California, 1986.
[20]Product Data: The NEXUS range if conditioning amplifiers
檢索日期:95.1.23。取自 World Wide Web:http://www.bksv.com/pdf/Bp1702.pdf
[21] S. Kim, G. F. Edelmann, W. A. Kuperman, W. S. Hodgkiss, H. C. Song and T. Akal, “Spatial resolution of time-reversal arrays in shallow water,” J. Acoust. Soc. Am. 110(2), pp. 820-829, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top