跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉育延
研究生(外文):Yu-Yen Liu
論文名稱:福山三種地形主要樹種葉部養分濃度之季節變化
論文名稱(外文):Seasonal changes in the foliar nutrients of major species in three topographic types of Fushan
指導教授:鹿兒陽
指導教授(外文):Erh-Yang Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:109
中文關鍵詞:福山養分濃度地形季節變化葉部老化淋溶作用養分再吸收效率養分再吸收度
外文關鍵詞:Fushannutrient concentrationstopographyseasonal changeleaf senescenceleachingresorption efficiencyresorption proficiency
相關次數:
  • 被引用被引用:4
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物葉部養分對植物的活力與生產力具有重要的影響,季節的變化與地形的差異造就了植物葉部養分在時間上與空間上的變異,因此是植物生理生態學上重要且值得探討的主題。本研究以福山試驗林第一集水區的11種植物為調查對象,研究植物葉部養分濃度受季節變化與地形的影響,並採集三個地形的土壤以了解土壤特性與植物養分間的關係。自2005年4月至2005年11月,共採集植物樣本4次及土壤樣本1次以進行葉部養分及土壤性質分析。結果顯示,受到地形的影響,福山土壤養分肥力狀況與植物葉部養分地位皆可分為「溪谷型」與「中坡─稜線型」兩大類。溪谷型土壤的pH、土壤有效性磷、可交換性陽離子鈣、鎂與土壤鹽基飽和度顯著高於中坡─稜線型土壤(P ≦ 0.0087)。溪谷植物葉部巨量元素(氮、磷、鉀、鈣、鎂)養分濃度顯著高於中坡─稜線植物(P < 0.0001),可能是反應溪谷土壤肥力較高的結果。在季節變化方(依據植物不同生理年齡,4月新葉〜11月老葉)面,植物葉部氮、磷、鉀的濃度會隨著季節變化而減少,鈣、錳的濃度則會隨著季節變化而增加,鎂的濃度季節變化則較不一致,隨植物種類不同而異。在養分再吸收效率的表現上,磷(58.3%)、鉀(48.1%)的再吸收效率顯著高於氮(23.7%)的再吸收效率(P = 0.0001);中坡─稜線植物磷(64.1%)、鉀(55.4%)的再吸收效率顯著高於溪谷植物磷(41.1%)、鉀(26.1%)的再吸收效率(P ≦ 0.0047),而氮的再吸收效率在兩地形則無顯著差異。中坡─稜線植物葉部具有較高的養分再吸收效率(例如:PRE),可能是為了適應土壤肥力較低環境所形成的因應策略。在11月時兩類地形之植物葉部氮濃度皆很高,顯示氮尚未再吸收完全;在11月時溪谷的磷濃度也很高,顯示磷也尚未再吸收完全,相對地,中坡─稜線植物磷濃度則接近再吸收作用的臨界值,顯示在土壤肥力較低的環境磷再吸收作用較完全。
Foliar nutrition can influence vigor and productivity of plants. The seasonal changes and topographical difference cause the temporal and spatial variations in foliar nutrient composition. Both are important topics and worth further discussion in plant ecophysiology. In this study, I collected leaf samples from 11 plant species and soil samples to investigate the effects of seasonal change and topographical difference on foliage nutrient compositions in Watershed #1, Fushan Experimental Forest. I collected leaf samples four times and soil samples once from April to November, 2005. The results showed that soil fertility and nutrient concentrations in foliage could be classified into “bottom type” and “middle-top type”. Bottom type soil had significantly higher pH, available phosphorous, exchangeable calcium, exchangeable magnesium, and base saturation than middle-top type soil (P ≦ 0.0087). The foliar concentrations of nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg), were significantly higher in bottom type plants than in middle-top type plants (P < 0.0001). The differences in the foliar nutrient compositions could be a response to the differences in soil fertility between bottom type and middle-top type. In eight out of eleven species, the foliar concentrations of N, P and K increased with sampling sequence, but those of Ca and manganese (Mn) decreased. Seasonal patterns of foliar Mg concentrations were inconsistent and dependent on plant species. In nutrient resorption efficiency (RE), P (58.3%) and K (48.1%) resorption efficiency (PRE, KRE) were significantly higher than N (23.7%) resorption efficiency (NRE) (P = 0.0001). Middle-top type plants had significantly higher PRE (64.1%) and KRE (55.4%) than bottom type plants (P ≦ 0.0047), whereas there was no significant difference in NRE between bottom type and middle-top type plants. The high resorption efficiency might be a strategy of plants to adapt to low soil fertility. In November the foliar N concentrations were still rather high in plants of both types, suggesting the incomplete resorption. In November, similarly, the high concentrations of foliar P in bottom type plants also suggested the incomplete resorption. By contrast, the foliar P concentrations in middle-top type plants had approached the threshold of resorption proficiency in November, indicating the more complete P resoprtion in the soil with low fertility.
目錄
中文摘要…………………………………………………………………….……I
英文摘要………………………………………………………………...……….II
圖目錄…………………………………………………………………………..VI
表目錄………………………………………………………………....……….VII
附錄目錄………………………………………………………………………..IX

前言 ……………………………………………………………………………..1
前人研究…………………………………………………………………………3
一. 地形對土壤的影響…………………………………………………...3
二. 土壤與植物的交互作用……………………………………………...4
三. 植物葉部養分濃度的變異…………………………………………...6
四. 植物養分再吸收作用………………………………………………...7
材料與方法……………………………………………………………………..11
一. 研究區概述………………………………………………………….11
二. 樣本採集…………………………………………………………….13
三. 實驗室分析………………………………………………………….15
四. 資料分析…………………………………………………………….18
結果……………………………………………………………………………..21
一. 土壤性質……………………………..……………..……………….21
二. 植物種類間葉部養分濃度的比較..……………..………………….25
三. 葉部養分的季節變化與地形間的差異…………………………….26
四. 植物養分與土壤性質之相關……………………………………….30
五. 養分再吸收效率…………………………………………………….32
討論……………………………………………………………………………..33
一. 地形對土壤的影響………………………………………………….33
二. 地形對植物養分濃度的影響……………………………………….34
三. 植物種類對養分濃度的影響……………………………………….36
四. 季節變化對葉部養分濃度的影響………………………………….38
五. 植物的養分再吸收作用…………………………………………….40
結論……………………………………………………………………………..46
參考文獻………………………………………………………………………..49
附錄……………………………………………………………………………103
圖目錄
圖1a、 福山試驗林第一集水區位置圖 (引自夏禹九等,1996)………………................58
圖1b、 福山試驗林第一集水區25m等高線地形圖…………………...............................58
圖2a、 11種植物葉部養分濃度的分佈(n = 531)………………………………………....59
圖2b、 11種植物葉部養分濃度的對數分佈(n = 531)………………………………........60
圖3、 長梗紫苧麻葉部養分濃度在不同月份之變化…………………………………....61
圖4、 台灣雅楠葉部養分濃度在不同月份之變化………………………………………62
圖5、 廣葉鋸齒雙蓋蕨葉部養分濃度在不同月份之變化………………………………63
圖6、 山龍眼葉部養分濃度在不同月份之變化…………………………………………64
圖7、 長葉木薑子葉部養分濃度在不同月份之變化……………………………………65
圖8、 烏皮茶葉部養分濃度在不同月份之變化…………………………………………66
圖9、 鋸葉長尾栲葉部養分濃度在不同月份之變化……………………………………67
圖10、 紅楠葉部養分濃度在不同月份之變化……………………………………………68
圖11、 黃杞葉部養分濃度在不同月份之變化……………………………………………69
圖12、 綠樟葉部養分濃度在不同月份之變化…………………………………………....70
圖13、 三斗石櫟葉部濃度元素在不同月份之變化………………………………………71

表目錄
表1、 研究樣區的基本資料………………………………………………………………72
表2、 不同地形與土壤深度之土壤性質…………………………………………………73
表3a、 腐植質層各土壤屬性間之相關分析 (n = 9)……………………………………...75
表3b、 土壤深度0〜10 cm的各屬性間之相關分析 (n = 9) ……………………………76
表3c、 土壤深度10〜20 cm的各屬性間之相關分析 (n = 9)… ………………………..77
表3d、 土壤深度20〜30 cm的各屬性間之相關分析 (n = 9) …………………………..78
表4、 11種植物葉部各養分平均濃度 (n = 531)…………………………………......…79
表5、 11種植物經logarithm轉換後葉部各養分平均濃度之分級(n = 531)…………..80
表6、 三種地形之植物葉部養分平均濃度 (n = 531)…………………………………...81
表7、 長梗紫苧麻在不同月份間葉部各養分之濃度…………………………………....82
表8、 台灣雅楠在不同月份間平均葉部養分濃度…………………………………..…..82
表9、 廣葉鋸齒雙蓋蕨在不同地形間與月份間平均葉部養分濃度……………………83
表10、 山龍眼在不同地形間與月份間平均葉部養分濃度………………………………84
表11、 長葉木薑子在不同地形間與月份間平均葉部養分濃度…………………………85
表12、 烏皮茶在不同地形間與月份間平均葉部養分濃度………………………………86
表13、 鋸葉長尾栲在不同地形間與月份間平均葉部養分濃度…………………………87
表14、 紅楠在不同地形間與月份間平均葉部養分濃度…………………………………88
表15、 黃杞在不同地形間與月份間平均葉部養分濃度…………………………………89
表16、 綠樟在不同月份間平均葉部養分濃度……………………………………………90
表17、 三斗石櫟在不同月份間平均葉部養分濃度………………………………………91
表18a、植物葉部養分濃度與腐植質層各土壤屬性之相關分析 (n = 531)………….......92
表18b、植物葉部養分濃度與土壤深度0〜10 cm各屬性之相關分析 (n = 531)……….92
表18c、植物葉部養分濃度與土壤深度10〜20 cm各屬性之相關分析 (n = 531)……...93
表18d、植物葉部養分濃度與土壤深度20〜30 cm各屬性之相關分析 (n = 531)……...93
表19a、廣葉鋸齒雙蓋蕨葉部養分濃度與腐植質層各土壤屬性之相關分析 (n = 81).....94
表19b、廣葉鋸齒雙蓋蕨葉部養分濃度與土壤深度0〜10 cm各屬性之相關分析 (n = 81)………………………………………………………………………………….95
表19c、廣葉鋸齒雙蓋蕨葉部養分濃度與土壤深度10〜20 cm各屬性之相關分析(n = 81)………………………………………………………………………………….96
表19d、廣葉鋸齒雙蓋蕨葉部養分濃度與土壤深度20〜30 cm各屬性之相關分析(n = 81)………………………………………………………………………………….97
表20a、山龍眼蕨葉部養分濃度與腐植質層各土壤屬性之相關分析 (n = 81)…………..98
表20b、山龍眼葉部養分濃度與土壤深度0〜10 cm各屬性之相關分析 (n = 81)………99
表20c、山龍眼葉部養分濃度與土壤深度10〜20 cm各屬性之相關分析 (n = 81)……100
表20d、山龍眼葉部養分濃度與土壤深度20〜30 cm各屬性之相關分析 (n = 81)……101
表21、 主要樹種之養分再吸收效率……………………………………………………...102
表22、 溪谷型植物與中坡─稜線型植物之養分再吸收效率……………………………102

附錄目錄
附錄 1、 三種地形在不同土壤深度之土壤性質…………………………….….....103
附錄 2、 11種植物4月新葉(Apr29)各養分平均濃度(n =174)…………….……..105
附錄 3、 7種植物6月(Jun06)各養分平均濃度 (n =95)…………….....................106
附錄 4、 11種植物8月(Aug11)各養分平均濃度 (n =178)……………………....107
附錄 5、 11種植物11月(Nov06)各養分平均濃度 (n =179)…………………......108
附錄 6、 7種植物4月老葉(Old Apr29)各養分平均濃度 (n =93)…………….….109
王相華、沈勇強、高瑞卿 (2002) 北台灣福山試驗林陡峭林地之植群構造在不同微地貌的變化。台灣林業科學 17(1):99-112。
王相華、潘富俊、劉景國、于幼新、洪聖峰 (2000) 台灣北部福山試驗林永久樣區之植物社會分類及梯度分析。台灣林業科學 15(3):411-428。
朱珮綺 (2005) 台大實驗林神木溪保護林兩相鄰林分枯落物動帶及其養分之研究。國立台灣大學森林環境暨資源學系碩士論文 92頁。
李玉琴 (1992) 福山地區低海拔闊葉樹林孔隙更新與林分動態之研究。台灣大學森林環境暨資源學系碩士論文 44頁。
沈明來 (1994) 試驗設計學。第三版。九州圖書 323-348頁。
林光清、洪富文、程煒兒、蔣先覺、張雲翔 (1996) 福山試驗林土壤調查與分類。台灣林業科學 11(2):159-174。
林則桐、馬復京、張乃航 (1995) 福山試驗林的植物社會與天然更新之研究。林業試驗所百週年慶學術研討會論文集 71-82頁。
夏禹九、黃正良、陳明杰 (1996) 福山試驗集水區量水堰之設計─分段複式量水堰。台灣林業科學 11(2):113-122。
章樂民 (1961) 大元山植物生態之研究。台灣省林業試驗所報告第70號 59頁。
鄧子菁 (1997) 福山森林試驗集水區於1996年二次颱風期間溪流水文化學變化之研究。台灣大學森林環境暨資源學系碩士論文 89頁。
劉瓊霦 (2000) 雨水流經關刀溪三種林分水化學的變化。國立中興大學森林學研究所博士論文 131頁。
鐘旭和、顏江河 (1997) 煤礦棄土地大頭茶抗鋁毒害機制之研究。台灣林業科學 12(2):167-175。
蘇鴻傑 (1979) 臺灣北部烏來─小集水區濶葉樹林群落生態之研究(四)──分析取樣法中植物社會介量之研究。臺大實驗林研究報告 123:173-196。
Aerts, R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology 84: 597-608.
Aerts, R. and F.S. Chapin III. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30: 1-67.
Bazzaz, F.A. 1979. The physiological ecology of plant succession. Annual Review of Ecology and Systematics 10: 351-371.
Billow, C., P. Matson and B. Yoder. 1994. Seasonal biochemical changes in coniferous forest canopies and their response to fertilization. Tree Physiology 14: 563–574.
Boerner, R.E.J. 1984. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to nutrient fertility. Journal of Applied Ecology 21: 1029-1040.
Brady, N.C. and R.R. Weil. 2002. The nature and properties of soils. Thirteenth edition. Prentice Hall.
Brubaker, S.C., A.J. Jones, D.T. Lewis and K. Frank. 1993. Soil properties associated with landscape position. Soil Science Society of America Journal 57: 235-239.
Burke, I.C., W.K. Lauenroth, R. Riggle, P. Brannen, B. Madigan and S. Beard. 1999. Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems 2: 422-438.
Burke, M.K. and D.J. Raynal. 1998. Liming influences growth and nutrient balances in sugar maple (Acer saccharum) seedlings on an acidic forest soil. Environmental and Experimental Botany 39:105–116.
Carr, H.P., E. Lombi, H. Kupper, S.P. McGrath and M.H. Wong. 2003. Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves. Agronomie 23(8): 705-710.
Chapin, F.S. III, D.A. Johnson and J.D. McKendrick. 1980. Seasonal movement of nutrients in plants of differing growth form in an alaskan tundra ecosystem: implications for herbivory. The Journal of Ecology 68: 189-209.
Chapin, F.S., III and R.A. Kedrowski. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64(2): 376-391.
Donald, R.G., D.W. Anderson and J.W.B. Stewart. 1993. The distribution of selected soil properties in relation to landscape morphology in forested Gray Luvisol soils. Canadian Journal of Soil Science 73: 165-172.
Ellsworth, D.S. and P.B. Reich. 1996. Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession. Ecology 77(2): 581-594.
Elsenbeer, H., A. West, M. Bonell. 1994. Hydrologic pathways and stormflow hydrochemistry at South Creek, northeast Queensland. Journal of Hydrology 162(1-2): 1-21.
Editorial Committee of the Flora of Taiwan. 1993. Flora of Taiwan. Second edition, volume three. National Science Council of the Republic of China.
Editorial Committee of the Flora of Taiwan. 1994. Flora of Taiwan. Second edition, volume one. National Science Council of the Republic of China.
Editorial Committee of the Flora of Taiwan. 1996. Flora of Taiwan. Second edition, volume two. National Science Council of the Republic of China.
Editorial Committee of the Flora of Taiwan. 1998. Flora of Taiwan. Second edition, volume four. National Science Council of the Republic of China.
Foy, C.D. 1984. Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil, p. 57-86. in Fred Adams (ed) Soil acidity and liming, Agronomy NO.12 second edition. American Society of Agronomy, Inc. Madison, Wisconsin USA.
Fu, B.J., S.L. Liu, K.M. Ma and Y.G. Zhu. 2004. Relationships between soil characteristics, topography and plant diversity in a heterogeneous deciduous broad-leaved forest near Beijing, China. Plant and Soil 261: 47-54.
Gee, G.W. and J.W. Bauder. 1986. Particle-size analysis. In A. Kiute (ed.) Methods of soil analysis. Part 1, Physical and minerological methods, 2nd ed. SSSA Book Series. pp.383-411.
Gindaba, J., A. Rozanov and L. Negash. 2005. Trees on farms and their contribution to soil fertility parameters in Badessa, eastern Ethiopia. Biology and Fertility of Soils 42: 66-71.
Grewal H.S. and R. Williams. 2003. Liming and cultivars affect root growth, nodulation, leaf to stem ratio, herbage yield, and elemental composition of alfalfa on an acid soil. Journal of Plant Nutrition 26(8): 1683-1696.
Grytsyuk, N., G. Arapis, L. Perepelyatnikova, T. Ivanova and V. Vynograds’ka. 2006. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil. Science of Total Environment 354: 224-231.
Hairston, A.B. and D.F. Grigal. 1991. Topographic influences on soils and trees within single mapping units on a sandy outwash landscape. Forest Ecology and Management 43: 35-45.
Honeycutt, C.W., R.D. Heil and C.V. Cole. 1990. Climatic and topographic relations of 3 great-plains soils. 2. carbon, nitrogen, and phosphorus. Soil Science Society of America Journal 54(2): 476-483.
Kao, W.-Y., C.-S. Lu and Y.-C. Chang. 2004. Foliar nutrient dynamics of five dominant plant species in Yuanyang Lake Nature Preserve, Taiwan. Taiwania 49(1): 49-56.
Killingbeck, K.T. 1996. Nutrients in senesced leaves: key to the search for potential resorption and resorption proficiency. Ecology 77(6): 1716-1727.
Larcher, W. 2003. Physiological plant ecology : ecophysiology and stress physiology of functional groups. Fourth edition. Springer, New York, Berlin. p. 185-224.
Leopold, A.C., E. Niedergang-Kamien and J. Janick. 1959. Experimental modification of plant senescence. Plant Physiology 34(5): 570-573.
Lindoo, S.J. and L.D. Noodén. 1977. Studies on the behavior of the senescence signal in anoka soybeans. Plant Physiology 59(6): 1136-1140.
López-Serrano, F.R., J. de las Heras, A.I. González-Ochoa and F.A. García-Morote. 2005. Effects of silvicultural treatments and seasonal patterns on foliar nutrients in young post-fire Pinus halepensis forest stands. Forest Ecology and Management 210: 321-336.
MacDonald, D.C. 1977. Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78.
Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press, San Diego, London.
Masunaga, T., D. Kubota, M. Hotta and T. Wakatsuki 1998. Nutritional characteristics of mineral elements in leaves of tree species in tropical rain forest, West Sumatra, Indonesia. Soil Science and Plant Nutrition 44(3): 315-329.
Mc Lean, E.O. 1982. Soil pH and lime requirement. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 199-223.
Milla, R., P. Castro-Díez, M. Maestro-Martínez1 and G. Montserrat-Martí. 2005. Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant and Soil 278: 303-313.
Moore, P.D. and S.B. Chapman. 1986. Methods in plant ecology. 2nd edition. Blackwell Scientific Publications. Oxford, London, Edinburgh.
Moore, D.P., R. Overstreet and L. Jacobson. 1961. Uptake of magnesium & its interaction with calcium in excised barley roots. Plant Physiology 36(3): 290-295.
Nambiar, E.K.S. and D.N. Fife. 1991. Nutrient retranslocation in temperate conifers. Tree Physiology 9: 185-207.
Nicolai V. 1988. Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. Oecologia 75: 575-579.
Nizeyimana, E. and T.J. Bicki. 1992. Soil and soil-landscape relationships in the north central region of Rwanda, east-central Africa. Siol Science 153(3): 225-236.
Oliveira, G., M.A. Martins-Loução, O. Correia and F. Catarino. 1996. Nutrient dynamics in crown tissues of cork-oak (Quercus suber L.). Trees - Structure and Function 10(4): 247-254.
Olson, S.R. and L.E. Sommers. 1982. Phosphorus. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 403-427.
Orgeas, J., Jean-Marc Ourcival and G. Bonin. 2002. Seasonal and spatial patterns of foliar nutrients in cork oak (Quercus suber L.) growing on siliceous soils in Provence (France). Plant Ecology 164: 201-211.
Parrish, J.A.D. and F.A. Bazzaz. 1982. Responses of plants from three successional communities to a nutrient gradient. Journal of Ecology 70: 233-248.
Pensa, M. and A. Sellin. 2003. Soil type affects nitrogen conservation in foliage of small Pinus sylvestris L. trees. Plant and Soil 253: 321-329.
Perry, D.A. 1994. Forest ecosystems. The Johns Hopkins University Press, Baltimore and London, USA pp. 339-438.
Ralhan, P.K. and S.P. Singh. 1987. Dynamics of nutrients and leaf mass in Central Himalayan Forest trees and shrubs. Ecology 68(6): 1974-1983.
Reich, P.B., M.B. Walters and D.S. Ellsworth. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62(3): 365-392.
Rentería, L.Y., V.J. Jaramillo, A. Martínez-Yrízar and A. Pérez-Jiménez. 2005. Nitrogen and phosphorus resorption in trees of a Mexican tropical dry forest. Trees - Structure and Function 19: 431-441.
Rhoades, J.D. 1982. Cation exchange capacity. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9: 149-157.
Richardson, S.J., D.A. Peltzer, R.B. Allen and M.S. McGlone. 2005. Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86(1): 20-25.
Roca-Pérez, L., P. Pérez-Bermúdez, I. Gavidia and R. Boluda. 2005. Relationships among soil characteristics, plant macronutrients, and cardenolide accumulation in natural populations of Digitalis obscura. Journal of Plant Nutrition and Soil Science 168: 774-780.
Ryan, D.F. and F.H. Bormann. 1982. Nutrient resorption in northern hardwood forests. BioScience 32(1): 29-32.
Sanchez-Alonso, F. and M. Lachica. 1987. Seasonal trends in the elemental content of plum leaves. Communications in Soil Science and Plant Analysis 18(1): 31-43.
Sariyildiz, T., J.M. Anderson and M. Kucuk. 2005. Effects of tree species and topography on soil chemistry, litter quality, and decomposition in Northeast Turkey. Soil Biology & Biochemistry 37: 1695-1706.
Schmidt, M.G., H. Schreier and P.B. Shan. 1993. Factors affecting the nutrient status of forest sites in a mountain watershed in Nepal. Journal of Soil Science 44: 417-425.
Scowcroft, P.G., J.E. Haraguchi and N.V. Hue. 2004. Reforestation and topography affect montane soil properties, nitrogen pools, and nitrogen transformations in Hawaii. Soil Science Society of America Journal 68: 959-968.
Singh, S.P., K. Bargali, A. Joshi and S. Chaudhry. 2005. Nitrogen resorption in leaves of tree and shrub seedlings in response to increasing soil fertility. Current Science 89: 389-396.
Stone, J.R., J.W. Gilliam, D.K. Cassel, R.B. Daniels, L.A. Nelson and H.J. Kleiss. 1985. Effect of erosion and landscape position on the productivity of Piedmont soils. Soil Science Society of America Journal 49: 987-995.
Su, H.J. 1985. Studies on the climate and vegetation types of the natural forests in Taiwan.(III). A Scheme of Geographical Climatic Regions. Quarterly Journal of China Forestry 18(3): 33-44.
Tilman, D. and D. Wedin. 1991. Plant traits and resource reduction for five grasses growing on a nitrogen gradient. Ecology 72(2): 685-700.
Tukey, H.B. Jr 1970. The leaching of substances from plants. Annual Review of Plant Physiology 21: 305-324.
Vaje, P.I., B.R. Singh and R. Lal. 2005. Soil erosion and nutrient losses from a volcanic ash soil in Kilimanjaro region, Tanzania. Journal of Sustainable Agriculture 26(4): 95-117.
Wilmot, T.R., D.S. Ellsworth and M.T. Tyree. 1995. Relationships among crown condition, growth, and stand nutrition in seven northern Vermont sugarbushes. Canadian Journal of Forest Research 25: 386-397.
Wright, I.J. and M. Westoby. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology 17: 10-19.
Yuan, Z.-Y., L.-H. Li, X.-G. Han, J.-H. Huang, G.-M. Jiang and S.-Q. Wan. 2005c. Soil characteristics and nitrogen resorption in Stipa krylovii native to northern China. Plant and Soil 273: 257-268.
Yuan, Z.-Y., L.-H. Li, X.-G. Han, J.-H. Huang, G.-M. Jiang, S.-Q. Wan, W.-H. Zhang and Q.-S. Chen. 2005b. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments 63: 191-202.
Yuan, Z.-Y., L.-H. Li, X.-G. Han, J.-H. Huang and S.-Q. Wan. 2005a. Foliar nitrogen dynamics and nitrogen resorption of a sandy shrub Salix gordejevii in northern China. Plant and Soil 278: 183-193.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 17.刁仁國,1996,〈論英國之難民庇護法制〉,《警政學報》,民國85年7月,頁1-12。
2. 18.李震山,1999,〈論德國關於難民之入出境管理法制--以處理請求政治庇護者及戰爭難民為例〉,《警學叢刊》,民國88年7月,頁245-268。
3. 19.黃子哲譯,2001,〈義大利的非法移民問題〉,《認識歐洲》,民國90年6月,頁87-93。
4. 20.陳勁,2002,〈人權理念在歐盟對外關係中之角色〉,《全球政治評論》,民國91年8月,頁33-57。
5. 21.陳隆志、廖福特,2002,〈國際人權公約與國內法化之探討〉,《國家政策季刊》,民國91年12月,頁33-56。
6. 22.陳麗娟,1995,〈申根公約之研究〉,《美歐月刊》,民國84年9月,頁1-13。
7. 23.鄧衍森,2002,〈從歐洲人權法院的實踐論國家主權與人權保障〉,《憲政時代》,民國91年1月,頁42-55。
8. 24.鄧衍森,1999,〈歐洲人權公約的法制化發展〉,《月旦法學》,民國88年1月,頁22-34。
9. 25.廖福特,2000,〈歐盟與歐洲人權公約〉,《月旦法學》,民國89年7月,頁87-98。
10. 26.廖福特,1999,〈歐洲人權公約〉,《新世紀智庫論壇》,民國88年12月,頁58-64。
11. 27.廖福特,2001,〈人權宣言?人權法典?--「歐洲聯盟基本權利憲章」之分析〉,《歐美研究》,民國90年12月,頁689-751。
12. 28.盧倩儀,1999,〈從歐盟移民政策決策過程談自由派政府間主義〉,《問題與研究》,民國88年3月,頁19-29。
13. 29.盧倩儀,1999,〈從歐盟移民政策看區域經濟整合的政治意涵〉,《美歐季刊》,民國88年3月,頁1-29。
14. 30.盧倩儀,2000,〈區域整合中之修約理論與阿姆斯特丹條約談判過程-移民相關規定之個案研究〉,《美歐季刊》,民國89年6月,頁171-204。
15. [47] 王銀波、劉黔蘭、吳論、林晏夙,1986,「銅、鋅、鎘及鉻對土壤微生物與作物生長之影響」,農林學報,第35期,97-110頁。