跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃明雅
研究生(外文):Ming-Ya, Huang
論文名稱:野生苦瓜RIPs基因序列分析與表現
論文名稱(外文):Analysis and Expression of the RIPs Gene in Wild Bitter Gourd ( Momordica charantia L. var. abbreviate Ser. )
指導教授:楊雯如楊雯如引用關係
指導教授(外文):Wen-Ju Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:57
中文關鍵詞:野生苦瓜核醣體失活蛋白基因序列相似度發育種子種子蛋白
外文關鍵詞:wild bitter melonRIPs genesequence similaritydeveloping seedsseed protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
核醣體失活蛋白(RIPs, Ribosome inactive proteins),可抑制目標細胞蛋白質生合成,一般認為與植物防禦有關,但相關研究不多,主要著重在抗癌、抗腫瘤及抗愛滋病毒的藥物研究。目前已發表的苦瓜RIPs多由栽培種的種子分離出來,野生苦瓜(Momordica charantia L. var. abbreviata Ser.)為苦瓜的變種,則沒有關於RIPs的相關研究。本試驗根據葫蘆科的RIPs序列保守區設計引子,以野生苦瓜基因組DNA為模版,擴增的片段(mca600)有609個核苷酸,可演繹出203個胺基酸,包含RIPs活性區域及RNA結合區域,與苦瓜屬RIPs相似度為47.7-58 %,mca600極有可能是由尚未發表的RIPs基因擴增而來。mca600與具有細胞毒性的括樓(Trichosanthin kirilowii)RIPs, trichosanthin相似度高(61.5%),根據記載野生苦瓜成熟種子有毒,可能與RIPs在成熟果實及種子累積有關。將野生苦瓜發育種子分成5級,以mca600為探針進行北方雜合分析,結果顯示發育第至3級種子的表現量最多,然而在種子發芽期間及葉片處理ABA、SA及MJ後皆無表現;mca600探針也無法偵測到栽培種發育第3級種子的基因表現訊息,顯示野生種與栽培種在種子生成的RIPs可能是由不同的基因所控制。
以SDS-PAGE分析發育種子的初抽蛋白,觀察到33kD蛋白開始出現的時間和RIPs基因表現的時間一致,以分子量推測RIPs基因的初級產物約為33kD,因此33kD蛋白可能含有RIPs基因的初級產物,在種子中後期累積,成為儲藏蛋白。發育種子及成熟乾燥種子,沒有觀察到明顯的30kD蛋白累積,但當種子發芽後第0-8天可以觀察到,30kD蛋白可能是由RIPs的33kD蛋白裂解而來。依據本試驗結果及前人研究假設RIPs基因先以未成熟蛋白的形式儲藏在成熟種子,RIPs活性較低,待種子萌發再裂解為30kD的成熟蛋白,活性提升,可能與野生苦瓜苗期早期的抗病力有關。
Ribosome inactive proteins (RIPs) are a group of proteins that inhibit protein synthesis of the target cell. In Cucurbitaceae, RIPs have been identified from the extracts of roots and seeds of different species. Research was mainly focused on their anti-tumor and anti-HIV activity; however, their role in plant physiology was not yet clear. Due to the wild bitter gourd (Momordica charantia L. var.abbreviata Ser.) is much more tolerant to environmental stresses; it is a good material to study for the relationship between RIPs and plant defense. Using a set of degenerate primers, designed according to conserved domain of RIPs in Cucurbitaceae, a 609 bp PCR product was amplified (mca600) from the genomic DNA of the wild bitter gourd. The deduced amino acid sequence contained two RIPs active regions and two RNA binding regions. The similarity of amino acid sequence between mca600 and RIPs in Momordica was 47.7~58 % revealed the possibility that mca600 might amplified from a different RIPs gene as compared with the published RIPs gene in Momordica. Besides, the expression of RIPs gene from any other cultivated bitter gourd could not be detected by the mca600 probe. Therefore, the mca600 might be relevant to a RIP gene different from the published RIPs gene in Momordica. Surprisingly, mca600 shared 61.5% similarity with trichosanthin, a RIPs in Trichosanthes kirilowii. Since trichosanthin is not only anti-tumor and anti-HIV but also toxic to intact animals, the biological character of the RIPs in wild bitter gourd is worth to be investigated. The result of northern blot analysis indicated that the RIP gene we identified was seed specific and expressed in the developing seeds from 14 to 22 DAP. Besides, a 33KD protein appeared on the SDS-PAGE according to the same time course. The predicted size of RIPs is 30 kD, but it did not appeared on the SDS-PAGE until seed germination. According to this study and others’ investigation, we hypothesize that 33kD protein contained the unmature protein of RIPs in wild bitter gourd and it accumulated during middle-post developmented seed. The 33 kD protein would be proteolyted to smaller one, a 30 kD protein, after germination, which could offer nutrient and defence ability to seedling.
縮寫字表 1
中文摘要 2

第一章 前言 3

第二章 前人研究 6
一、核醣體失活蛋白:Ribosome inactive proteins 的活性 6
二、RIPs的三種類型 6
三、RIPs對病原菌的攻擊 7
四、核醣體失活蛋白的分佈情形 8
1. RIPs於生物界的分佈 8
2. RIPs於植物的分佈 8
3. 植物RIPs於各器官的分佈 9
4. 植物RIPs於細胞層次的分佈 9
五、種子發育及發芽後RIPs的表現 10
1. 種子發育期間RIPs基因與活性之表現 10
2. 種子發芽後RIPs基因與活性表現 10
六、RIPs受到環境誘導 11


七、植物RIPs的生合成與攻擊 12
1. RIPs在自身細胞的生合成 12
2. RIPs攻擊目標細胞 13
八、栽培種苦瓜的種子發育及RIPs相關研究: 14

第三章 材料與方法 16
一、 植物材料的準備 16
二、 野生苦瓜RIPs基因探針之製備 17
1. 引子之選擇 17
2. 野生種及栽培種苦瓜基因組DNA之抽取 17
3. 核酸探針取得與序列分析 18
4. 探針的DIG標定 18
三、 RNA之抽取 19
四、 北方氏雜合分析 19
五、 SDS-PAGE(聚丙烯醯胺膠體電泳)分析 20
1. 吸光值線性回歸公式建立與蛋白質濃度的測定 20
2. SDS-PAGE電泳分析及CBR染色 21





第四章 結果 22
一、 mca600序列特徵 22
二、 mca600與苦瓜屬RIPs的胺基酸相似度 23
三、 mca600 與28種植物RIPs的相似度 23
四、 苦瓜蛋白質組成 25
1. 野生苦瓜各部位蛋白質的組成 25
2. 26個苦瓜品系種子蛋白質組成 25
五、 苦瓜種子發育期間RIPs基因表現與蛋白質變化情形 26
1. 野生苦瓜種子的發育 26
2. 野生苦瓜發育種子RIPs基因的表現 27
3. 野生種與栽培種RIPs基因的表現 27
4. 野生苦瓜種子發育時期蛋白質的變化 28
六、 苦瓜種子發芽期間RIPs基因表現與蛋白質變化情形 28
1. 野生苦瓜種子發芽後RIPs基因的表現 28
2. 野生苦瓜種子發芽後蛋白質組成的變化情形 28
3. 栽培種‘瓊一號苦瓜’(品系71號)蛋白質組成的變化情形 29
七、植物生長調節劑對野生苦瓜RIPs基因表現的影響 29




第五章 討論 31
一、 mca600序列分析 31
二、 mca600與苦瓜屬RIPs的胺基酸相似度 31
三、 mca600 與28種植物RIPs的相似度 32
四、 野生苦瓜RIPs基因表現 33
五、 野生苦瓜RIPs蛋白的功能 34

Abstract 36

參考文獻 37

圖表目錄
圖 1. 三種類型RIPs蛋白的初級結構示意圖 42
圖 2. 三種類型RIPs成熟蛋白的結構示意圖 42
圖 3. mca600片段電泳情形與序列。 43
圖 4. mca 600演繹胺基酸序列與α-momorcharin, β-momorcharin、ricin A鏈及b-32胺基酸序列對比結果。 44
圖 5. 植物界3種類型的RIPs的胺基酸序列之間的演化相關性。 47
圖 6. 12.5% SDS-PAGE分析野生苦瓜各部位蛋白質的組成。 48
圖 7. 12.5% SDS-PAGE分析26個苦瓜品系種子蛋白質的組成。 49
圖 8. 野生苦瓜第3、4、5級種子發育的情形以及乾燥種子外型。 50
圖 9. 野生苦瓜RIPs基因於不同成熟度種子的基因表現情形。 51
圖 10. 野生苦瓜果實發育至黃熟期果實生長的變化情形。 51
圖 11. 苦瓜野生種(品系59)及栽培品系17、26、37、108及121的果實外觀。 52
圖 12. 苦瓜野生種(品系59)及栽培品系17、26、37、108及121之3級種子RIPs基因的表現。 53
圖 13. 苦瓜品系17、26、37、59、108及121擴增RIPs基因。 53
圖 14. 野生苦瓜不同成熟度種子蛋白12.5% SDS-PAGE分析情形。 54
圖 15. 野生苦瓜不同時期幼苗生長情形。 55
圖 16. 野生苦瓜不同時期幼苗RIPs基因的表現情形。 55
圖 17. 野生苦瓜不同時期幼苗於12.5% SDS-PAGE分析情形。 56
圖 18. 瓊一號苦瓜(品系71)不同時期幼苗於12.5% SDS-PAGE分析情形。 56
圖 19. 野生苦瓜RIP基因於不同濃度的ABA、SA、MJ處理離體葉片後之基因表現分析。 57

表 1. 苦瓜屬RIPs核酸(胺基酸)序列相似度比對。............................................45
表 2. 參與演化樹狀圖比對的RIPs序列相關資料。 46
表 3.種子的蛋白質組成分析參試的26個苦瓜品系 49
表 4. 苦瓜野生種(品系59)及栽培品系17、26、37、108及121的果實特徵。 52
1.台灣省政府農林廳。2003。台灣農業年報。
2.朱照靜、鍾識昌、羅澤淵、肖倬殷。1990。苦瓜子有效成分研究。藥學學報。25: 898-903。
3.李季眉。1982。苦瓜抑菌成分的性質。中華農學會報。127: 68-76。
4.肖春英、張日藻。1987。蔬菜栽培學各論:苦瓜(浙江農業大學主編,南方二版)。 pp. 287-289。農業出版社。北京。
5.林益昇。1995。瓜類作物病害。台灣農家要覽-農作篇 (三): 27-34。
6.林益昇、黃家興、宋曉清。1998。苦瓜--絲瓜價接珠對苦瓜萎凋病之抵抗性及其產量。 植物保護協會會刊。40: 121-132。
7.林學正、蕭吉雄、張有明、林泰椿。1985。瓜類種源圖說。台灣省農業試驗所編印。台中。p. 60。
8.郁宗雄。1982。瓜類栽培:苦瓜(梁鶚主編,增訂三版)。pp.150-156。豐年社出版。台北。
9.許再文. 2003。談台灣的瓜科植物。自然保育季刊。14: 13-23。
10.陳滄海. 1985。苦瓜毒素病病原病毒種類之鑑定。屏東農專學報。26: 118-125。
11.張有明、鄭櫻慧、許華欣和黃鵬林。2000。苦瓜果實構造及發育之研究 II. 苦瓜胚、種子和果實的發育。中華農業研究。49: 49-60。
12.鄭永昌。1980。苦瓜蛋白的初步研究。化工技術。5: 27-31。
13.劉政道和李碩朋。1995。苦瓜。台灣農家要覽 農作篇(二): 299-406。
14.顏國卿、孫璐西、李東慶。1981。苦瓜子中番茄紅素之研究 I. 成分鑑定、番茄紅素含量調查及催熟試驗。中國農業化學會誌。19(3,4): 227-235。
15.關佩聰。1985。苦瓜-中國農業科學院蔬菜研究所(主編)。中國蔬菜栽培學。pp. 607-611頁。農業出版社。北京。
16.岩佐俊吉. 1980. 熱帶的蔬菜 - - 苦瓜(Bitter gourd). pp. 45-48。養賢堂。東京。
17.Arazi, T., P. Lee Huang, P.L. Huang, L. Zhang, Y. Moshe Shiboleth, A. Gal-On, and S. Lee-Huang. 2002. Production of antiviral and antitumor proteins MAP30 and GAP31 in cucurbits using the plant virus vector ZYMV-AGII. Biochem. Biophys. Res. Commun. 292: 441-448.
18.Bailey, C.J., C. Day, and B.A. Leatherdale. 1986. Traditional plant remedies for diabetes. Diabetic Med. 3: 185-186.
19.Barbieri, L., M.G. Battelli, and F. Stirpe. 1993. Ribosome-inactivating proteins from plants. Biochim Biophys Acta. 1154: 237-282.
20.Bass, H.W., C. Webster, G.R. Obrian, J.K.M. Roberts, and R.S. Boston. 1992. A maize Ribosome-Inactivating Protein is controlled by the transcriptional activator Opaque-2. Plant Cell. 4: 225-234.
21.Battelli, M.G., L. Polito, A. Bolognesi, L. Lafleur, Y. Fradet, and F. Stirpe. 1996. Toxicity of ribosome-inactivating proteins-containing immunotoxins to a human bladder carcinoma cell line. Int. J. Cancer. 65: 485-490.
22.Biswas, A.R., S. Ramaswamy, and J.S. Bapna. 1991. Analgesic effect of Momordica charantia seed extract in mice and rats. J. Ethnopharmacol. 31: 115-118.
23.Brandao, M., M. Botelho, and E. Krettli. 1985. Antimalarial experimental chemotherapy using natural products. Cienc. Cult. 37: 1152-1163.
24.Carzaniga, R., L. Sinclair, A.P. Fordhamskelton, N. Harris, and R.R.D. Croy. 1994. Cellular and Subcellular-Distribution of Saporins, Type-1 Ribosome-Inactivating Proteins, in Soapwort (Saponaria-Officinalis L). Planta. 194: 461-470.
25.Comerford, S.C. 1996. Medicinal plants of two mayan healers from San Andres, Peten, Guatemala. Econ. Bot. 50: 327-336.
26.Day, C.and C. Bailey. 1988. A diabetologist''s herbal. Curr. Med. Lit. Diabetes Royal Soc. Med. 5: 31-35.
27.Desmyter, S., F. Vandenbussche, Q. Hao, P. Proost, W.J. Peumans, and E.J. Van Damme. 2003. Type-1 ribosome-inactivating protein from iris bulbs: a useful agronomic tool to engineer virus resistance? Plant Mol. Biol. 51: 567-576.
28.Dinota, A., L. Barbieri, M. Gobbi, P.L. Tazzari, S. Rizzi, A. Bontadini, A. Bolognesi, S. Tura, and F. Stirpe. 1989. An immunotoxin containing momordin suitable for bone marrow purging in multiple myeloma patients. Br. J. Cancer. 60: 315-319.
29.Dong, T.X., T.B. Ng, R.N.S. Wong, H.W. Yeung, and G.J. Xu. 1993. Ribosome Inactivating Protein-Like Activity in Seeds of Diverse Cucurbitaceae Plants. International J. of Biochem. 25: 415-419.
30.Endo, Y., K. Mitsui, M. Motizuki, and K. Tsurugi. 1987. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 262: 5908-5912.
31.Endo, Y.and K. Tsurugi. 1987. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 262: 8128-8130.
32.Frigerio, L., A. Vitale, J. M. Lord, A. Ceriotti, and L. M. Roberts. 1998. Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. J. Biol. Chem. 273: 14194-14199.
33.Hao, Q., E.J. Van Damme, B. Hause, A. Barre, Y. Chen, P. Rouge, and W.J. Peumans. 2001. Iris bulbs express type 1 and type 2 ribosome-inactivating proteins with unusual properties. Plant Physiol. 125: 866-876.
34.Hartley, M.R.and J.M. Lord. 2004. Cytotoxic ribosome-inactivating lectins from plants. Biochim. Biophys. Acta. 1701: 1-14.
35.Hazes, B.and R.J. Read. 1997. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochem. 36: 11051-11054.
36.Herklots, G.A.C. 1972. Vegetables in South-East Asia-Bitter cucumber. London, George Allen & Unwin LTD. p. 333-338.
37.Jach, G., B. Gornhardt, J. Mundy, J. Logemann, E. Pinsdorf, R. Leah, J. Schell, and C. Maas. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97-109.
38.Jain, S.R.and S.N. Sharma. 1967. Hypoglycaemic drugs of indian indigenous origin. Planta Med. 15: 439-442.
39.Jimenez, A.and D. Vazquez. 1985. Plant and Fungal Protein and Glycoprotein Toxins Inhibiting Eukaryote Protein-Synthesis. Annu. Rev. Microbiol. 39: 649-672.
40.Khan, M.A.and V.K. Singh. 1996. A folklore survey of some plants of bhopal district forests, madhya pradesh, india, described as antidiabetics. Fitoterapia. 67: 416-421.
41.Leah, R., H. Tommerup, I. Svendsen, and J. Mundy. 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266: 1564-1573.
42.Lee-Huang, S., P.L. Huang, H.-C. Chen, H.-f. Kung, P.L. Nara, B.-Q. Li, H.I. Huang, and P.L. Huang. 1992. Plant proteins with antiviral activity against human immunodeficiency virus. Natural Products as Antiviral Agents. CK Chu, ed. p.153-170.
43.Lee-Huang, S., P.L. Huang, H.C. Chen, P.L. Huang, A. S. Bourinbaiar, H.I. Huang, and H.F. Kung. 1995 a. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene. 161: 151-156.
44.Lee-Huang, S., P.L. Huang, A.S. Bourinbaiar, H.C. Chen, and H.F. Kung. 1995 b. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc. Natl. Acad. Sci. U S A. 92: 8818-8822.
45.Liu, R.S., G.Q. Wei, Q. Yang, W.J. He, and W.Y. Liu. 2002. Cinnamomin, a type II ribosome-inactivating protein, is a storage protein in the seed of the camphor tree (Cinnamomum camphora). Biochem. J. 362: 659-663.
46.Michiels, A., W. Van den Ende, M. Tucker, L. Van Riet, and A. Van Laere. 2003. Extraction of high-quality genomic DNA from latex-containing plants. Anal. Biochem. 315: 85-89.
47.Morton, J.F. 1967. The balsam pear-an edible, medicinal and toxic plant. Econ. Bot.: 57.
48.Mueller-oerlinghausen, B., W. Ngamwathana, and P. Kanchanapee. 1971. Investigation into thai medicinal plants said to cure diabetes. J. Med. Asso. Thailand. 54.
49.Nielsen, K.a.B.R.S. 2001. Ribosome-inactive protein: a plant perspectives. Annu. Rev. Plant Mol. Biol. 52: 785-816.
50.Oommachan, M.and S.S. Khan. 1981. Plants in aid of family planning programme. Sci. Life. 1: 64-66.
51.Ortigao, M.and M. Better. 1992. Momordin II, a ribosome inactivating protein from Momordica balsamina, is homologous to other plant proteins. Nucleic Acids Res. 20: 4662.
52.Parkash, A., T.B. Ng, and W.W. Tso. 2002. Purification and characterization of charantin, a napin-like ribosome-inactivating peptide from bitter gourd (Momordica charantia) seeds. J. Pept. Res. 59: 197-202.
53.Qin, W., H. Ming-Xing, X. Ying, Z. Xin-Shen, and C. Fang. 2005. Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J. Biosci. 30: 351-357.
54.Ready, M.P., D.T. Brown, and J.D. Robertus. 1986. Extracellular localization of pokeweed antiviral protein. Proc. Natl. Acad. Sci. U S A. 83: 5053-5056.
55.Reinbothe, S., C. Reinbothe, J. Lehmann, W. Becker, K. Apel, and B. Parthier. 1994. JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc. Natl. Acad. Sci. U S A. 91: 7012-7016.
56.Ruiz, A.R., R.A. Dela Torre, N. Alonso, A. Villaescusa, J. Betancourt, and A. Vizoso. 1996. Screening of medicinal plants for inductiob of somatic somatic segregation activity in aspergillus nidulans. J. Ethnopharmacol. 52: 123-127.
57.Sharma, L.D., H.S. Bahga, and P.S. Srivastava. 1971. In vitro anthelmintic screening of indigenous screening of indigenous medicinal plants against haemonchus contortus (Rudolphi, 1803) cobbold, 1898 of sheep and goats. Indian J. Anim. Res. 5: 33-38.
58.Song, S.K., Y. Choi, Y.H. Moon, S.G. Kim, Y.D. Choi, and J.S. Lee. 2000. Systemic induction of a Phytolacca insularis antiviral protein gene by mechanical wounding, jasmonic acid, and abscisic acid. Plant Mol. Biol. 43: 439-450.
59.Stirpe, F. 2004. Ribosome-inactivating proteins. Toxicon. 44: 371-383.
60.Stirpe, F., E.J. Wawrzynczak, A.N. Brown, R.E. Knyba, G.J. Watson, L. Barbieri, and P.E. Thorpe. 1988. Selective cytotoxic activity of immunotoxins composed of a monoclonal anti-Thy 1.1 antibody and the ribosome-inactivating proteins bryodin and momordin. Br. J. Cancer. 58: 558-561.
61.Taylor, S., A. Massiah, G. Lomonossoff, L.M. Roberts, J.M. Lord, and M. Hartley. 1994. Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J. 5: 827-835.
62.Vepachedu, R., H.P. Bais, and J.M. Vivanco. 2003. Molecular characterization and post-transcriptional regulation of ME1, a type-I ribosome-inactivating protein from Mirabilis expansa. Planta. 217: 498-506.
63.Virdi, J., S. Sivakami, S. Shahani, A.C. Suthar, M.M. Banavalikar, and M.K. Biyani. 2003. Antihyperglycemic effects of three extracts from Momordica charantia. J. Ethnopharmacol. 88: 107-111.
64.Vivanco, J.M., B.J. Savary, and H.E. Flores. 1999. Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the andean crop Mirabilis expansa. Plant Physiol. 119: 1447-1456.
65.Wang, H.and T.B. Ng. 1998. Ribosome inactivating protein and lectin from bitter melon (Momordica charantia) seeds: sequence comparison with related proteins. Biochem. Biophys. Res. Commun. 253: 143-146.
66.Wu, T.H., L.P. Chow, and J.Y. Lin. 1998. Sechiumin, a ribosome-inactivating protein from the edible gourd, Sechium edule Swartz--purification, characterization, molecular cloning and expression. Eur. J. Biochem. 255: 400-408.
67.Xiong, J.P., Z.X. Xia, L. Zhang, G.J. Ye, S.W. Jin, and Y. Wang. 1994. Crystallization and preliminary crystallographic study of beta-momorcharin. J. Mol. Biol. 238: 284-285.
68.Yamasaki, K. 1996. Effect on some saponins on glucose transport ststem. Adv. Exp. Med. Biol. 404: 195-206.
69.Yeung, H.W., W.W. Li, and W.Y. Chan. 1986. Alpha and beta momorcharins. Int. J. Peptide. Protein Res. 28: 518-524.
70.Zhu, R.H., T.B. Ng, H.W. Yeung, and P.C. Shaw. 1992. High-level synthesis of biologically-active recombinant trichosanthin in Escherichia Coli. Int. J. Pept. Protein Res. 39: 77-81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文