跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉曉君
研究生(外文):Hsiao-Jiun Yeh
論文名稱:香蕉ABC轉運蛋白cDNA之選殖及基因啟動子活性分析
論文名稱(外文):Cloning of cDNA and analysis of gene promoter activity for ABC (ATP-binding cassette) transporter in banana
指導教授:黃鵬林
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:69
中文關鍵詞:ABC轉運蛋白
外文關鍵詞:ABC (ATP-binding cassette) transporter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為了探討香蕉ABC轉運蛋白 (ATP binding cassette transporter) 之基因結構及其啟動子表現特性,以香蕉基因組選殖系為探針,利用溶斑雜交法篩選香蕉cDNA庫共ㄧ百五十萬個溶斑形成單位 (plaque forming unit, pfu) ,得到兩類ABC轉運蛋白cDNA,第一類選殖系選取pMaABC-29進行全長定序其序列,總長度為4731 bp,可演繹出全長1452個胺基酸,預測蛋白分子量163 kDa、等電點 (Isoelectronic point) 為8.20;第二類以選殖系pMaABC-74P為代表,cDNA序列長度為4760 bp,為香蕉ABC轉運蛋白Mh-ABC1基因之同源對應cDNA,可轉譯1468個胺基酸,預測分子量為165 kDa、等電點為8.50,比對cDNA及基因之序列,得知此基因在基因解碼區內具23個顯子。兩類香蕉ABC轉運蛋白所演繹之多胜肽皆屬於PDR次家族 (pleiotropic drug resistance subfamily) 之蛋白,胺基酸序列與稻米之PDR蛋白同源性較高。以pMaABC-74P cDNA為探針,進行南方氏雜交分析結果顯示,雜交片段符合基因組選殖系之限制酶圖譜,且此類ABC轉運蛋白基因在香蕉基因組中為單一拷貝或低拷貝基因。以另一cDNA選殖系pMaABC-29 cDNA為探針進行南方氏雜交分析,結果顯示此基因為單一拷貝或低拷貝基因。
利用菸草轉殖株進行啟動子活性分析結果顯示,只有不含預測intron1及5’-UTR之構築pBI121Bid,可在苗期位於下胚軸靠近莖頂分生組織之部位表現GUS活性;且表現隨著苗期發育會逐漸減弱,而其他構築在苗期均無GUS活性之表達,在未開放小花花苞中觀察到,pBI121B、pB2、pBid2轉殖株的花器中,啟動子活性僅專一表達於花藥;pBI121C啟動子活性表現在萼片、柱頭、花柱、子房及花藥等處,而pBI121Bid轉殖株之花器的GUS活性則是表達於花藥與子房中。
Mh-ABC1啟動子序列分析結果,得知在Mh-ABC1啟動子區域中存在數十個可能受到植物荷爾蒙如離層酸 (abscisic acid)、激勃素(gibberellic acid)、茉莉酸 (jasmonic acid)及水楊酸 (salicylic acid, SA) 等所調控之序列,此外亦存在受到環境因子如光線、病原菌 (pathogen)、鹽類 (salt)、乾旱缺水 (drought / dehydration)、低溫 (cold)、病原菌細胞萃取物 (elicitor) 等調控之保守區域。SA處理會促使pBI121Bid轉殖株小苗GUS表達強度增加,50 mM CuSO4處理五種構築之菸草轉殖株小苗,皆可在植株下胚軸與根部交接處偵測到基因表現,Ca2+離子對於pBI121Bid 轉殖株內之GUS活性亦有促進之效果;Al2(SO4)3處理則促進pB2菸草轉殖株小苗全株皆表現GUS活性,同時也能增強pBI121Bid轉殖植株於下胚軸及子葉報導基因之表達。
To understand the gene sturcture of banana ABC transporter, plaque hybridization was performed to screen for banana cDNA library. Using gene fragments of Mh-ABC1 as probe., two types of ABC transporter cDNA were obtained. pMaABC-29 cDNA is 4752 bp long encoding, a polypeptide of 1468 amino acids with a isoelectric point of 8.50 whose molecular weight is 165 kDa. The other type of cDNA from clone pMaABC-74P, 4760 bp in length, is
homologous to Mh-ABC1 with 99% homology in nucleotide sequence. Both types of banana ABC transporter belong to PDR (pleiotropic drug resistance) subfamily and share high homology to the PDR proteins in rice. Southern blot
analysis indicated that hybridized fragments using pMaABC-74P as probe match well with the restriction map of Mh-ABC1 gene and this gene belongs to a single- or low-copy gene. According to the Southern analysis using
pMaABC-29 cDNA as probe, the hybridization signals revealed that this gene is also a single- or low-copy gene.

On the other hand,β-glucuonidase (GUS) gene driven by different regions of Mh-ABC1 promoter were transformed into tobacco and the transgenic plants were used to study the promoter activity of Mh-ABC1. Only pBI121Bid, containing 5’-flanking sequence without putative intron 1 and 5’-UTR, expressed GUS activity in seedling stage. The position of its GUS activity lies in the hyposotyl and the apical meristem. In flower bud, pBI121B, pB2, pBid2
transgenic plant only express GUS activity in anther. Complete 4.5 Kb 5’-flanking sequence of Mh-ABC1 express of GUS gene in bract, stigma, style,ovary and anther of transgenic tobacco. pBI121Bid expressed GUS activity in
anther and ovary. Furthermore, analysis of promoter region from Mh-ABC1 revealed that several conserved cis-acting elements responsive to abscisic acid, gibberellic acid, jasmonic acid, salicylic acid (SA), light, pathogen, salt,
drought/dehydration, cold and elicitor, are present. SA treatment enhanced the promoter activity in pBI121Bid transgenic seedlings. Promoter activity of transgenic plants was induced by 50 mM CuSO4 and expression of GUS
activity was found at the border of hypocotyl and root in all of the five constructs used for this study. Moreover, promoter activity in pBI121Bid transgenic plant was elevated by Ca2+ treatment. Upon treatment with Al2(SO4)3, the level of GUS expression was increased in entire of pB2
transgenic plants and in apical meristem of pBI121Bid transgenic plants.
中文摘要 1
Abstract 3
壹、 前言 5
貳、 前人研究 6
一、 ABC轉運蛋白之構造與作用模式 6
二、 植物ABC轉運蛋白之分類 7
三、 整元體 (Full-size) 植物 ABC 轉運蛋白 7
(一)、 PDR次家族 7
(二)、 MDR/PGP次家族 9
(三)、 MRP次家族 11
四、 半元體 (Half-size) ABC轉運蛋白 12
參、 材料與方法 14
一、 材料 14
二、 試驗方法 14
(一)、 .仙人蕉ABC轉運蛋白cDNA之選殖 14
(二)、 反轉錄聚合酶鏈鎖反應 (RT-PCR) 16
(三)、 南方氏雜交分析 (Southern hybridization analysis) 18
(四)、 香蕉ABC轉運蛋白啟動子活性分析 20
肆、 結果 22
一、 香蕉ABC轉運蛋白cDNA之選殖與分析 22
(一)、 cDNA之篩選與分析 22
(二)、 南方氏雜交分析 39
二、 香蕉ABC轉運蛋白啟動子活性分析 41
(一)、 菸草轉殖株R2代於不同生長階段GUS活性表現分析 41
(二)、 組織特異性分析 41
(三)、 啟動子序列分析 41
(四)、 啟動子誘導物分析試驗 47
伍、 討論 56
一、 香蕉ABC轉運蛋白cDNA之選殖與分析 56
(一)、 Mh-ABC1基因結構分析 56
(二)、 ABC轉運蛋白PDR次家族基因顯、隱子數目之比較 57
二、 香蕉ABC轉運蛋白基因啟動子活性分析 61
(一)、 啟動子於不同生長階段之GUS活性表現 61
(二)、 組織特異性表現 61
(三)、 植物荷爾蒙誘導 62
(四)、 金屬離子誘導 63
陸、 參考文獻 66
李幸儒. 2004. 香蕉ABC 轉運蛋白基因啟動子之活性分析. 國立臺灣大學園藝學系碩士論文.

蔡嘉慧. 2001. 香蕉ABC 轉運蛋白基因之分析. 國立臺灣大學園藝學系碩士論文.

Biemans-ldehinkel, E., M. K. Doeven, and B. Poolman. 2006. ABC transporter architecture and regulatory roles of accessory domains. FEBS
Lett. 580: 1023-1035.

Bovet, L., U. Feller, and E. Martinoia. 2005. Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int. 31: 263-267.

Ducos, E., S. Fraysse, and M. Boutry. 2005. NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum. FEBS Lett. 579: 6791-6795.

Eichhorn, H., M. Klinghammer, P. Becht, and R. Tenhaken. 2006. Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J Exp. Bot. 57: 2193-2201.

Gaedeke, N., M. Klein, U. Kolukisaoglu, C. Forestier, A. Muller, M. Ansorge, D. Becker, Y. Mamnun, K. Kuchler, B. Schulz, B. Mueller-Roeber, and E. Martinoia. 2001. The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J. 20: 1875-1887.

Geisler, M.and A.S. Murphy. 2006. The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett. 580: 1094-1102.

Geisler, M., J.J. Blakeslee, R. Bouchard, O.R. Lee, V. Vincenzetti, A. Bandyopadhyay, B. Titapiwatanakun, W.A. Peer, A. Bailly, E.L.

Richards, K.F. Ejendal, A.P. Smith, C. Baroux, U. Grossniklaus, A. Muller, C.A. Hrycyna, R. Dudler, A.S. Murphy, and E. Martinoia. 2005. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 44: 179-194.

Goodman, C. D., P. Casati, and V. Walbot. 2004. A multidrug resistance-associated protein involved in anthocyanin transporter in Zea mays. Plant Cell 16: 1812-1826.

Klein, M., M. Geisler, S.J. Suh, H.U. Kolukisaoglu, L. Azevedo, S. Plaza, M.D. Curtis, A. Richter, B. Weder, B. Schulz, and E. Martinoia. 2004.
Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant J. 39: 219-236.

Feinberg, A.P., and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to hig specific activity. Anal.
Biochem. 132: 6-13.

Feinberg, A.P., and Vogelstein, B. (1984). A technique for radiolabeling DNA restriction endonuclease fragments to hig specific activity. Anal. Biochem. 137: 266-267.

Jofuku, K.D., and Goldberg, R.B. (1988). Analysis of plant gene structure. In Shaw CH (ed) Plant Molecular biology. A practical approach. IRL. Press. Oxford, UK. p37-42.

Kobae, Y., T. Sekino, H. Yoshioka, T. Nakagawa, E. Martinoia, and M. Maeshima. 2006. Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol. 47: 309-318.

Klein, M., L. Perfus-Barbeoch, A. Frelet, N. Gaedeke, D. Reinhardt, B. Mueller-Roeber, E. Martinoia, and C. Forestier. 2003. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J. 33: 119-129.

Larsen, P.B., M.J. Geisler, C.A. Jones, K.M. Williams, and J.D. Cancel. 2005. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J. 41: 353-363.

Lee, M., K. Lee, J. Lee, E.W. Noh, and Y. Lee. 2005. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol. 138: 827-836.

Lee, E.K., M. Kwon, J.H. Ko, H. Yi, M.G. Hwang, S. Chang, and M.H. Cho. 2004. Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol. 134: 528-538.

Sanchez-Fernandez, Rocio, T. G. E. Davies, J. O. D. Coleman, and P. A. Rea. 2001. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biological Chem. 276: 30231-30244.

Santelia, D., V. Vincenzetti, E. Azzarello, L. Bovet, Y. Fukao, P. Duchtig, S. Mancuso, E. Martinoia, and M. Geisler. 2005. MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett. 579: 5399-5406.

Sasabe, M., K. Toyoda, T. Shiraishi, Y. Inagaki, and Y. Ichinose. 2002. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett. 518: 164-168.

Sasaki, T., B. Ezaki, and H. Matsumoto. 2002. A gene encoding multidrug resistance (MDR)-like protein is included by aluminum and inhibitors of calcium flux in wheat. Plant Cell Physiol. 43: 177-185.

Schuluz B., and H. .. Kolukisaoglu. 2006. Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just loles in membranes. FEBS Lett. 580: 1010-1016.

Shitan, N., I. Bazin, K. Dan, K. Obata, K. Kigawa, K. Ueda, F. Sato, C. Forestier, and K. Yazaki. 2003. Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc. Natl. Acad. Sci. USA. 100: 751-756.

Short, J.M., Fernandez, J.M., Sorge, J.A., and Huse, W.D. 1988. λZap: a bacteriophage λ expression vector with in vivo excision properties. Nucleic.
Acid. Res. 16: 7583-7600.

Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517.

Stacey, G., S. Koh, C. Granger, and J. M. Becker. 2002. Peptide transporter in plants. Trend. Plant Sci. 7: 257-263.

Swarbreck, D., P. J. Ripoll, D. A. Brown, K. J. Edwards, and F. Theodoulou. 2003. Isolation and characterisation of two multidrug resistance associated protein genes from maize. Gene 315: 153-164.

Terasaka, K., J.J. Blakeslee, B. Titapiwatanakun, W.A. Peer, A. Bandyopadhyay, S.N. Makam, O.R. Lee, E.L. Richards, A.S. Murphy, F. Sato, and K. Yazaki. 2005. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots.
Plant Cell 17: 2922-2939.

Theodoulou, F.L. 2000. Plant ABC transporters. Biochim Biophys Acta. 1465: 79-103.

van den Brule, S.and C.C. Smart. 2002. The plant PDR family of ABC transporters. Planta 216: 95-106.

van den Brule, S., A. Muller, A.J. Fleming, and C.C. Smart. 2002. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J. 30: 649-662.

Yazaki, K. 2006. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 580: 1183-1191.

Zhu, Y.Q., K.X. Xu, B. Luo, J.W. Wang, and X.Y. Chen. 2003. An ATP-binding cassette transporter GhWBC1 from elongating cotton fibers. Plant Physiol. 133: 580-588.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top