跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 11:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭孄婷
研究生(外文):Lan-Ting Kuo
論文名稱:三倍體香蕉懸浮細胞培養及體胚發生
論文名稱(外文):Cell suspension culture and somatic embryogenesis of triploid banana
指導教授:許圳塗許圳塗引用關係
指導教授(外文):Chou-Tou Shii
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
畢業學年度:94
語文別:中文
論文頁數:86
中文關鍵詞:瘉合組織誘導懸浮細胞培養極化誘導體胚發生
外文關鍵詞:callogenesissuspenstion culturepolarizationsomatic embryogenesis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:509
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
香蕉AAA基因組群華蕉系栽培種北蕉及寶島蕉之幼雄花序,切段培殖體,接種於含IAA 1㎎/L及NAA 1㎎/L之逆分化培養基,另參試組合2,4-D(2、4 ㎎/L)及Picloram(2㎎/L),可獲得具擬胚之顆粒狀癒合組織。含2,4-D之培養基,可誘導顏色較深黃、顆粒較大之癒合組織,且發生率較高。Picloram 2㎎/L則可誘導出顏色淺黃、顆粒較小且數量較多之癒合組織,褐化機率也較低。細胞懸浮培養則採用TB5培養基,北蕉可於懸浮培養4-6月後形成均質之細胞系。寶島蕉之癒合組織則易於懸浮培養過程中出現細胞增大與液胞化,不易釋放出胚性細胞,經6個月培養後,仍無法建立均質細胞系。
懸浮細胞胞外pH測定及細胞極化誘導,參試材料為AAB cv. Raja細胞系,細胞系維持繼代培養於TB5增生培養基,添加NaH2PO4及MES(2-N-morpholino-ethanesulfonic acid)處理14天,細胞自調生長至特定位階,而無法朝極化生長。外控pH 5.0-5.3及再生培養基添加MES培養,隨極化時間延長,第一次不對稱分裂細胞比率增加,以SH3 + MES 10g/L處理之不對稱分裂提升時間點較早,處理期間pH穩定維持於5.22 ± 0.24,但以外控pH 5.0-5.3 之不對稱分裂雙胞比值較高,約為1.22。經極化誘導,可使細胞同步朝向極化生長,於第7天形成原胚或球胚。AAA基因組以北蕉懸浮細胞更換為再生培養基及再生培養基添加MES 10g/L,兩處理皆可誘導細胞朝向極化,形成具完整原表皮之球胚。添加MES 10g/L於處理期間胞外pH維持於5.19 ± 0.26,並具促進前胚發生,提早發育為增大之球胚期。
胚性細胞平板培養體胚誘導試驗,參試預培養包括培養基組成、及MES添加對體胚形成之影響,並測試再生培養液用量及細胞團大小分及對體胚發生的影響。Raja及北蕉胚性細胞於平板前以再生培養基添加MES預處理,以SH3 + 10 g/L MES處理2週,細胞可朝極化生長、同步誘導進入球胚期,平板後可得生長較同步、早熟性且形態正常之體胚。Raja胚性細胞於平板前進行大小分級,較大之細胞團易產生叢生胚,60目以下之細胞團可產生個別之體胚。
Banana Pei-Chia and Formosana(Musa spp. Sub-group Cavendish AAA)cultured in MS medium with complex auxin(IAA 1㎎/L、NAA 1㎎L)and 2,4-D、Picloram addition, could induce embryogenic calli with embryoids. The callus formation rate was higher when the mediums were added 2,4-D, and the calli induced was granular、dark yellow. When use Picloram 2㎎/L as the sole strong auxin, explant browning rate was lower, and calli formed with light yellow、smaller granule and more callus amount. During the suspension culture, Pei-Chiao could formed more uniform cell line after 4-6 month culture, while calli of Formosana turned to enlarge instead of release embryogenic cells. After 6 months of culture, still could not develop the cell line of Formosana.
AAB cv. Raja embryogenic cells cultured in proliferation medium TB5 with NaH2PO4 and MES (2-N-morpholino-ethanesulfonic acid) for 14 days, cells auto-regulated to steady state and could not turn to polar growth. Controlling extracellular pH at 5.0-5.3 and cultured in SH3、SH3 with MES 10g/L led up to the asymmetric division. Moreover, the cells cultured in SH3 with MES 10 g/L were polarized earlierly, and kept steady extracellular pH at 5.22 ± 0.24 .Those cell lines treated by controlling extracellular pH 5.0-5.3 possess the higher axis ratio at 1.22 . After polarization treatment for 7 days, the embryogenic cells could formed proembryo or globular bodies.The embryogenic cells of AAA cv. Pei-Chiao could also be induced to polarization and formed globular bodies with complete protoderm when cultured in SH3 and SH3 with MES 10 ㎎/L. The extracellular pH of Pei-Chiao could be kept at 5.19 ± 0.26 in SH3 with MES 10 ㎎/L.
Raja and Pei-Chiao pretreated by SH3 with MES 10 g/L for 2 weeks, cells tend too form globular bodies synchronously, and could produce synchronous、separate and normal somatic embryos after plating culture.
Embryogenic cells of AAB cv. Raja classified according to size before plating, the larger cell mass tended to form aggregated embyos, since the cell clusters under 60 mesh could form separate ones.
內容目次

一、 前言…………….…………………….…………………….….……....1
二、 前人研究……………………….……………………….………....3
(一) 胚性潛力……...……………………………..…………….…………3
1、培殖體………………………………………….…………….…………3
2、外加植物生長調節劑對胚性誘導的影響……….………….…………4
3、內生荷爾蒙與胚性潛力之關聯………………….………….…………5
4、逆境與對細胞胚性潛力之影響………………....……………………..6
(1) 高濃度ABA…………………………………………..……….……6
(2) 養份逆境…………………………………………………..…..…....6
(3) 高滲透壓……………………………………………………....……6
(4) 低溼度………………………………………………..………..……7
(5) 過氧化逆境……………………………..……………………..……7
5、 SERK基因與胚性潛力之關聯…...……..……………………………7
(二)細胞之生理極化…………………………………………………….…8
1、褐藻結合子之生理極化過程……………………..………….….……8
(1) 極性軸的選擇……………..…………………..……………………9
(2) 極性軸的放大……………..…………..……....……………………9
(3) 極性軸的固定..……………………………………………………10
2、高等植物之生理極化…………………………..…………………..…10
(1) 結合子之生理極化..………………..…………....……………..…11
(2) 植物體細胞的極化…………………………........……………..…12
3、pH與極化之關係………….………..……………………..…………12
(三)體胚發生……….………………………………………..……………13
1、 前胚性定向細胞與直接體胚發生…………………………..………..13
2、 可誘導前胚性定向細胞與間接體胚發生…………………..………..14
三、 材料與方法…………………………………………….….…….…..15
(一)胚性懸浮細胞之建立……...………..……….……….….….........…15
1、癒合組織誘導………………………..……….……….….……...….15
2、癒合組織之切片解剖觀察…………..…...………..….………….....16
3、懸浮細胞系建立與繼代培養…………….………..….………….....16
(二)胚性細胞極化生長之誘導…………………………...……..……...17
1、增生培養基配合pH緩衝物質處理…..…………………………..17
2、再生培養基配合pH緩衝物質處理………………………………17
3、極化誘導與早期胚發生之觀察……..…………………………....17
(三)平板培養…..……………………………………………………18
1、 接種之細胞團大小及再生培養基施加量對體胚發生之影響...…..18
2、 MES配合再生培養基預處理……………………………...….…18
(四)胚苗轉換…..……………………………………………………19
(五)統計方法…..……………………………………………………19
四、 結果……………………………………………………..….……20
(一)胚性懸浮細胞之建立……………………………………..……20
1、癒合組織誘導………………………………………………..……..20
2、癒合組織繼代後生長情形…………………………………..…......21
3、懸浮細胞系建立…………………………………………..…..……..21
(二)胚性細胞極化生長之誘導………………………………………22
1、增生培養基配合pH緩衝物質處理……………………..…………22
2、再生培養基配合pH緩衝物質處理……………………..…………23
(1) Raja之胚性細胞以再生培養基配合NaH2PO4 及MES處理...23
(2) 北蕉之胚性細胞以再生養基配合MES處理………….…….....24
(3) 極化誘導與前胚發生之觀察…………………………..…….….25
i 極化處理與第一次細胞分裂變化………………………..……….25
ii 胚發生早期之觀察………………..………………....…….……..27
(三)平板培養…………………………………………………...………...27
1、不同細胞團大小及再生培養基施加量對體胚發生之影響..…..…27
(1) 不同大小之細胞團接種後體胚發生差異..……..……………..27
(2)再生培養基之施加量對體胚發生之影響……………………..28 2、不同預處理對體胚發生之影響………………….……..……………28
(1)不同預處理對香蕉Raja體胚發生之影響…….………….……28
(2)不同預處理對香蕉北蕉體胚發生之影響……..………….……29
(四)胚苗轉換……………………………………………………………...30
五、 討論…………………………………………………………..……….73
(一)幼花序衍生懸浮細胞建立………………………….………..…..…..73
1、癒合組織誘導……………………………………….………..………73
2、胚性懸浮細胞建立……………………………………………………73(二)香蕉胚性細胞極化生長誘導……...…...………………………….…74
1、緩衝物質對胞外pH變化及細胞生長發育之影響…………….…..74
(1) Raja之胚性細胞更換再生培養基並添加緩衝物質處理....……74
(2) 北蕉之胚性細胞以再生培養基配合MES處理極化…………...75
2、極化誘導與前胚發生……………………………………………......76
(1)極化處理與第一次不對稱分裂之關聯………………………….76
(2)前胚發生之過程………………………………………………….77
(三)平板培養與體胚發生……………………………………………77
1、細胞團大小及再生培養基施加量與體胚發育的關係…………….77
2、預處理與體胚質量提升之效果…………………………………….78
(四)胚苗轉換……………………………………………………………...79
六、 中文摘要………………………………………………………….…..80
七、 英文摘要……………………………………………………………...82
八、 參考文獻……………………………………………………………...83

圖目次
圖 1.寶島蕉幼花序衍生癒合組織形態及組織切片特性。…………......31
圖 2.複合生長素培養基(含1 ㎎/L IAA、1 ㎎/L NAA)組合2,4-D及Picloram對北蕉及寶島蕉之胚性癒合組織發生之比較。……….33
圖 3.香蕉幼花序衍生癒合組織以複合生長素培養基,添加2,4-D及Picloram之繼代培養生長情況。………………………….…….….35
圖 4.北蕉及寶島蕉之癒合組織於TB5培養基中誘導懸浮細胞系建立之過程比較。………………………………………………………..…37
圖 5.北蕉及寶島蕉之懸浮細胞建立過程之胞外pH變動曲線。…...39
圖 6.增生培養基TB5配合NaH2PO4處理,香蕉AAB cv. Raja胚性細胞胞外pH變動之情形。…………………………………………....40
圖 7.增生培養基添加MES,對香蕉AAB cv. Raja胚性細胞胞外pH變動之影響。…………………………………………………………..…42
圖 8.MES處理對香蕉AAB cv. Raja懸浮細胞培養於增生培養基(預調pH 5.7)之胞外pH變化影響。……………………………….…..43
圖 9.經預調位階及MES添加處理,香蕉AAB cv. Raja胚性細胞於TB5培養基中之非極化增生情形。……………………………………..44
圖10.再生培養基SH3配合NaH2PO4處理,香蕉AAB cv. Raja胚性細胞胞外pH變動曲線。………………………………….……….…..45
圖11.再生培養基SH3配合MES,對香蕉AAB cv. Raja胚性細胞胞外pH變動之影響。………………………………………………….....46
圖12.再生培養基SH3組合MES 10 g/L處理,對香蕉cv. Raja胚性細胞前胚發生之影響。…………………………….…………….…47
圖13.MES處理對香蕉AAA cv.北蕉胚性細胞於SH3培養基中胞外pH變動之作用。…………………………………………….................49
圖14.再生培養基 (SH3) 及MES處理,誘導香蕉AAA cv.北蕉胚性細胞極化生長之情形。…………………………………………………..50
圖15.不同的極化處理對Raja 之雙胞比值之提升作用。……….……...53
圖16.香蕉cv. Raja胚性懸浮細胞於不同極化條件下,第一次細胞分裂之雙胞對稱與不對稱分裂頻率變化。……………………….……..54
圖17. Raja 前胚性細胞於不同極化條件下之第一次細胞分裂之雙胞軸比例分佈頻率。……………………….…………………………….…..55
圖18. TB5外控pH 5.0-5.3、SH3及SH3添加MES 10 g/L三種處理,對香蕉AAB cv. Raja胚性細胞生長之影響。…...……….…….……...56
圖19.香蕉cv. Raja 胚性細胞前胚發生之觀察。……..……………….58
圖20.SH3培養基施用量及不同接種大小細胞團對香蕉cv. Raja胚性細 胞體胚生長發育影響狀況...…………………………………..…….61
圖21.再生培養基(SH3)添加MES預培養,平板後香蕉AAB cv. Raja體胚生長情形。…………………………………………….………..65
圖22. SH3組合MES之預處理,對北蕉胚性細胞體胚生長狀況之影響。……………………………………………………………..….....68
圖 23. NAA、IAA及GA 對北蕉體胚胚苗轉換之影響。……………...…71












表目次
表1. 品種、培養基及處理時間對香蕉幼花序癒合組織發生率之變方分析表。………………………………………………………………32
表2. 複合生長素IAA 1㎎/L及NAA ㎎/L,組合2,4-D或Picloram,對香蕉AAA基因組栽培種北蕉及寶島蕉之幼雄花序培養誘導癒合組織發生之影響。…………………………….………………..……32
表3. 預調增生培養基之pH位階及MES處理與香蕉cv. Raja之胚性細胞培養期間pH變動之關係。………………….……………………41
表4. TB5外控pH 5.0-5.3、SH3及SH3 + 10 g/L MES處理之香蕉AAB cv. Raja胚性細胞雙胞大小比值LSD分析。……...……………………52
表5. SH3施加量、細胞團大小及不同體胚大小對Raja胚性細胞體胚發生數之變方分析表。………………………………………………...60
表6. 再生培養基(SH3)施用量對不同大小細胞團之Raja細胞平板體胚發生之數目及大小之影響。………………….…………………..60
表7. TB5組合MES處理對香蕉AAB cv. Raja細胞平板後(60天)體胚發生個數、大小之影響。………………………….…………………63
表8. 預處理天數、MES濃度及不同體胚大小對Raja體胚發生數之變方分析表。……………………………………………………………...64
表9. SH3組合MES預處理對香蕉AAB cv. Raja胚性細胞平板(60天)後體胚發生之數目、大小之影響。……………….…………………64
表10. 預處理天數、MES濃度及不同體胚大小對北蕉胚性細胞體胚發生數之變方分析表。…………………………………………………...67
表11. 北蕉胚性細胞平板前,以SH3組合MES預處理,可提高體胚發生同步性及早熟性。………………………………………………...67
表12. 北蕉體胚於1/2 N.1、1/2 I.1、1/2 N.1I.1及 1/2 N.1G.5之培養基培養60天後發根及發芽之比率。………………..……………………70
台灣香蕉研究所. 2001. 92年香蕉研究彙報. p.6-9 , p.15-20台灣香蕉研究所發行.
胡適宜. 1990. 被子植物胚胎學. 曉園出版社. 台北市. p.201-213.
呂政璋. 2001. 香蕉AAB cv. Raja 胚性細胞極化與非極化生長之調控 與質量化體胚生產. 國立台灣大學園藝學研究所碩士論文.
李阿嬌. 1992. 流蘇體外培養之體胚發生及植株之再生. 國立台灣大學園藝學研究所碩士論文.
馬溯軒、許圳塗. 1972.香蕉幼莖切頂組織培養應用於不定芽誘發之研究. 中國園藝 18:135-142.
馬溯軒、許圳塗. 1974. 香蕉不定芽之組織培養育成幼株之研究. 中國園藝. 20:6-12.
馬溯軒. 1991. 香蕉之體胚發生與植株再生. 園藝作物組織培養之應用研討會專集. p.181-188.
郭俊緯. 2003. 香蕉體胚衍生胚性細胞懸浮培養、胚性細胞極性誘導與體胚發生. 國立台灣大學園藝學研究所碩士論文.
陳柏文. 2005. 彩葉屬、鶯歌屬及空氣屬觀賞鳳梨組織培養器官發生與體胚發生之研究. 國立台灣大學園藝學研究所碩士論文.
黃怡菁. 1994. 香蕉細胞懸浮琣養及原生質體培養體胚誘導研究.國立台灣大學園藝學究所博士論文.
黃鵬林. 1980. 香蕉花序莖頂組織培養. 國立台灣大學園藝學研究所碩士論文.
鄧澄欣、黃新川、李倩雲. 1991. 香蕉品種改良的新途徑. 中國園藝 37:129-140.
蔡淑華. 1998. 植物組織切片技術綱要. 茂昌股份有限公司. 台北.
鍾仁彬. 2001. 香蕉胚性細胞懸浮培養胞外pH變化與極化非極化生長調控及縐折生物反應器機能之探討. 國立台灣大學園藝學研究所博士論文.
鍾明娟. 2001. 二倍體拔蕉胚乳組織衍生胚性細胞懸浮培養及胚發生與多倍體植株. 國立台灣大學園藝學研究所碩士論文.
羅靜琪. 2004. 流蘇幼花衍生胚性懸浮培養及體胚發生誘導. 國立台灣大學 園藝學研究所碩士論文.
Choi, Y. E., H. K. Kim, W. Y. Soh, and D. C. Yang. 1997. Developmental and structural aspects of somatic embryos formed on medium contain 2,3,5-triiodobenzoic acid. Plant Cell Rep. 16:738-744.
Charriere F, B. Sotta, E. Miginiac, and G. Hahne. 1999. Induction of adventitious or somatic embryos on in vitro cultured zygoticembryos of Helianthus annuus : Variation of endogenous hormonelevels. Plant Physiol.Biochem. 37: 751–757.
Dijak, M., and D. H. Simmonds. 1988. Microtubule organization during early direct embryogenesis from mesophyll protoplasts of Medicago sativa L. Plant Sci. 58:183-191.
Fehér, A., T. P. Pasternak, and D. Dudits. Transition of somatic plant cells to an embryogenic state. 2003. Plant Cell, Tissue Organ Cult. 74:201-228.
Fujimura, T. and A. Komamine. 1979. Synchoronization of somatic embryogenesis in a carrot cell suspension culture. Plant Physiol. 64:162-164.
Gibbon, B. C. and D. L. Kropf. 1993. Intracellular pH and its regulation in Pelvetia zygotes. Dev. Biol. 157:259-268.
Georget, F., R. Domergue, N. Ferrière, and F. X. Côte. 2000.Morphohistological study of the different constituents of a banana (Musa AAA, cv. Grande naine) embryogenic cell suspension. Plant Cell Rep. 19:748-754.
Hecht, V., J. P. Vielle-Calzada, M. V. Hartog, D. L. Schimidt, K. Boutilier, Grossniklaus, and S. C. de Vries. 2001. The Arabidopsis Somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127:803-816.
Huang, I. C., C. T. Shii, and S. S. Ma. 1999. Cycling growth characters in embryogenic cell suspension culture of banana AAA cavendish subgroup and AAB cultivar. J. Chinese Soc. Hort. Sci. 45:130-143.
Ikeda-Iwai, M., M. Umehera, S. Satoh, and H. Kamada. 2003. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J. 34:107-114.
Jalil, M., N. Khalid, and Y. Othman. 2003. Plant regeneration from embryogenicsuspension cultures of Musa acuminate cv. Mas(AA). Plant Cell, Tissue Organ Cult.75:209-214.
Jiménez, V. M. and F. Bangerth. 2001a. Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol. plant. 111:389-395.
Jiménez, V. M. and F. Bangerth. 2001b. Hormonal status of maize initial explants and of the embryogenic and nono-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci. 160:247-257.
Kaur, P. and S. L. Kothari. 2004. In vitro culture of kodo mille: influence of 2,4-D and picloram in combination with kinetin on callus initiation and regeneration. Plant Cell, Tissue Organ Cult. 77:73-79.
Korikorian, A. D. 1996. Strategies for minimal growth maintenance of cell culture:A perspective on management for extended duration experimentation in the microgravity environment of a Space station. Bot. Rev. 62:41-108.
Kropf, D. L. 1997. Induction of polarity in Fucoid zygote. Plant Cell 9:1011-1020.
Kropf, D. L., C. A. Henry, and B. C. Gibbon. 1995. Measurement and manipulation of cytosolic pH in polarizing zygotes. Eur. J. Cell Biol. 68:297-305.
Kropf, D. L., S. R. Bisgrove, and W. E. Hable. 1999. Establishing a growth axis in fucoid algae. Trends in Plant Science. 4:490-494.
Kumria, R., V. G. Sunnichan, D. K. Das, S. K. Gupta, V. S. Reddy, R. K. Bhatnagar, and S. Leelavathi. 2003. High-frequency somatic embryo production and maturation into normal plants in cotton(Gossypium hirsutum)through metabolic stress. Plant Cell Rep. 21:635-639.
Lee, E. K., D. Y. Cho, and W. Y. Soh. 2001. Enhance production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep. 20:408-415.
Li, w., C. G. Zhang, G. Q. Guo, and G. C. Zheng. 2003. ABA stimulated direct formation of embryo-like structures at globular stage from hypocotyls of Physalis pubescens. Acta. Bot. Boreal. –Occident. Sin. 23:309-313.
Ma, S. S., F. T. Shii, and S. O. Wang. 1978. Regeneration of banana plants from shoot meristem tips and inflorescence section in vitro. Abs. No. 1963. XXth Intel. Cong. Hort. Sydeny, Australia.
Mayer, U., G. Büttner, and G. Jürgens. 1993. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development.117:149-162.
Nishiwaki, M., K. Fujino, Y. Koda, K. Masuda, and Y. Kikuta. 2000. Somatic embryogenesis induced by the simple application of abscisic acid to carrot(Daucus carota L.)seedlings in culture. Planta 211:756-759.
Nomura, K. and K. Komamine. 1986. Polarization synthesis and cell division in cell clusters during somatic embryogenesis from single carrot cells. New Phytol. 104:25-32.
Pasternak, T. P., E. Prinsen, F. Ayaydin, P. Miskolczi, G. Potters, H. Asard, H. A. V. Onckelen, D. Dudits, and A. Fehér. 2002. The role of auxin, pH, and stress in the activiation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol. 129:1807-1819.
Pu, R. and K. R. Robinson. 1998. Cytoplasmic calcium gradients and calmodulin in the early development of the fucoid alga Pelvetia compressa. J. Cell Sci. 111:3197-3207.
Ramarosandratana A. V. and J. V. Staden. 2003. Tissue position, explant orienration and anaphthaleneacetic acid (NAA) affect initiation of somatic embryos anad callus proliferation in Norway spruse (Picea abies) Plant Cell, Tissue Organ Cult. 74:249-225.
Sagare, A.P., Y. L. Lee, T. C. Lin, C. C. Chen, and H. S. Tsay. 2000.Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalisyanhusuo (Fumariaceae) – a medicinal plant. Plant Sci. 160: 139–147.
Smith, D. L. and A. D. Krikorian. 1990a. Low external pH replace 2,4-D inmaintaining and multiplying 2,4-D-initiated embryogenic cells of carrot. Physiol. Plant. 80:329-336.
Smith, D. L. and A. D. Krikorian. 1990b. Somatic embryogenesis of carrot in hormone-free medium: external pH control over morphogenesisi. Amer. J. Bot. 77: 1634-1647.
Steinmann, T., N. Geldner, M. Grebe, S. Mangold, C. L. Jackson, S. Paris, L. Gälweiler, K. Palme, and G. Ju¨rgens. 1999. Coordinated polar localizationof auxin efflux carrier PIN1 by GNOM ARF GEF. Science. 286:316-318.
Stover, R. H. and N. W. Simmonds. 1987. Bananas. Longman, London.
Thomas, C., R. Bronner, J. Molinier, E. Prinsen, H. Onckelen, and G. Hahne. 2002. Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215:577-583.
Thomas, C., D. Meyer, C. Himber, and A. Steinmetz. 2004. Spatial expression of sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol. Biochem. 42:35-42.
Williams, E. G. and G. Maheswarwn. 1986. Somatic embryogenesis: factors influencing coordinated behavior of cell cells as an embryogenic group. Ann. Bot. 57:443-462.
Zhao, J. and J. C. Cheng. 1992. Cytohistological study on somatic embryogenesis in Asparagus Officinalis L. Acta Botanica Sinica. 34:491-495.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top