跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳慧玲
研究生(外文):Hui-Ling Chen
論文名稱:苦瓜CTR1基因及其啟動子活性分析
論文名稱(外文):Analysis of Constitutive Triple Response 1 Gene and its Promoter Activity in Bitter Gourd
指導教授:杜宜殷
指導教授(外文):Yi-Yin Do
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:72
中文關鍵詞:乙烯苦瓜CTR1基因功能互補性過量表達啟動子活性分析
外文關鍵詞:ethyleneMcCTR1ctr1-1overexpressionpromoter activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為分析苦瓜 (Momordica charantia L.)之CTR1 (Constitutive Triple Response 1)同源基因McCTR1之功能與特性,進行功能互補分析,將CaMV 35S::McCTR1轉殖質體,以農桿菌花序浸染法轉殖至阿拉伯芥突變株ctr1-1中,轉殖株外表型可恢復為野生型態大小。過量表達McCTR1基因之CaMV 35::McCTR1轉殖菸草,經GUS活性及南方氏雜交分析顯示,McCTR1基因已嵌入菸草基因組,並觀察到轉殖植株有瓶內開花的情形,CaMV 35S::McCTR1轉殖株之成熟植株較未轉殖菸草矮化並且會提早開花,但不易具有稔性。另外,CaMV 35S::McCTR1阿拉伯芥轉殖植株之外表形態較野生型小,根皆較野生型短;而黑暗中幼苗之胚軸及根較野生型長,但處理乙烯前趨物ACC後,轉殖株及未轉殖野生型均與突變株ctr1-1形態無顯著差異,顯示過量表達McCTR1基因之轉殖植株仍對乙烯具敏感性。為瞭解苦瓜McCTR1基因啟動子之活性,首先以南方氏雜交分析,確認McCTR1::GUS轉殖菸草,接著進行組織化學染色分析,結果顯示GUS活性表現在轉殖植株之莖段及根部組織。阿拉伯芥McCTR1::GUS轉殖植株AtP2發育初期GUS表現於根部及第一對本葉,而發育後期轉殖株之下位葉及根部皆有顯著的GUS呈色。以BA、 ABA、GA3及
The CTR1 (constitutive triple response 1) ortholog (McCTR1) and its promoter activity from Momordica charantia L. have been characterized. Complementation of the Arabidopsis ctr1-1 mutant with the bitter gourd CTR1 gene regained like wild-type phenotype. CaMV 35S::McCTR1 transgenic tobaccos has been confirmed by GUS activity and Southern analysis indicating that McCTR1 located in tobacco genome. CaMV 35S::McCTR1 transgenic tobaccos accompanying with in vitro flowering, and in vivo were characterized by early flowering, hardly fertile, and shorter than wild-type of growth in the greenhouse. CaMV 35S::McCTR1 transgenic Arabidopsis plants have smaller size, shorter root in the light, but hypocotyls and roots longer than wild-type in the dark, while they showed no difference after 1-aminocyclopropane-1- carboxylic acid (ACC) treatment suggesting McCTR1-overexpressing plants were still sensitive to ethylene. For better understanding of McCTR1 promoter activity, Southern analysis and histochemical stain were used to verify McCTR1::GUS transgenic tobaccos which revealed GUS activity in stem and root. Besides, McCTR1::GUS transgenic Arabidopsis also had significant GUS activities in root and primary leaf during early developmental phase, and in old leaf and root during later developmental phase. The promoter activity of McCTR1::GUS Arabidopsis can be activated by BA, ABA, GA3, and SA treatment displaying GUS signal in old leaf. Various tissues can be observed for GUS activity by treatment of MeJA in root, NAA, 2,4-D in root tip, and ethylene in old leaf and root. Galactose, mannitol and trehalose can induce GUS activity in whole leaves. GUS stain faded in root using sorbitol or in the dark treatment. Heat induced McCTR1 expression in primary leaf and root, while induction of McCTR1 expression by wound was not significant.
中文摘要…………………………………………………………1
英文摘要…………………………………………………………2
壹、前言…………………………………………………………3
貳、前人研究……………………………………………………4
一、 乙烯生合…………………………………………….4
二、乙烯之訊息傳導……………………………………………5
(一) 乙烯受體…………………………………………………6
1. 阿拉伯芥乙烯受體系統……………………………………6
2. 其他作物乙烯受體系統……………………………………10
(二) CTR1 (Constitutive Triple Response 1)……………11
(三) EIN2 (Ethylene Insensitive 2)………………………13
(四) 細胞核內乙烯訊息傳導……………………………………14
三、CTR1蛋白質功能特性...................................................16
四、CTR1基因之表現...................................................18
五、苦瓜McCTR1基因特性...................................................20
參、材料與方法 …………………………………………………………22
一、轉殖質體………………………………………………………22
二、質體材料………………………………………………………22
三、試驗方法………………………………………………………22
(一) 農桿菌轉型….....................................23
(二) 農桿菌質體之小量製備…………………………………….23
(三) 阿拉伯芥之基因轉殖及轉植株篩選....................24
1. 阿拉伯芥之種植.......................…………………24
2. 阿拉伯芥之基因轉殖...........…………………………...24
3. 阿拉伯芥轉殖株之篩選.......………………………….....24
(四) 菸草之基因轉殖及篩選...........……………….......25
(五) GUS活性化學染色法.................................25
(六) 基因組 DNA之抽取...........…………...............26
(七) 南方氏雜交分析...........………...................26
1. 核酸探針之製備與標定反應............…………………..26
2. 南方氏雜交分析...........…………...................27
(八) 暗室生長阿拉伯芥幼苗之ACC處理.....................27
(九) 以不同誘導物及環境逆境處理阿拉伯芥T3轉殖株........28
肆、結果…………………………………….........................29
一、CTR1基因之功能互補分析.....................................................29
二、過量表達McCTR1基因分析.....................................................29
三、McCTR1基因啟動子活性分析...........................30
伍、討論….............................................56
一、CTR1基因之功能互補分析.....................................................56
二、過量表達McCTR1基因分析.....................................................56
三、McCTR1基因啟動子活性分析.....................................................58
陸、結語...............................................63
柒、參考文獻...........................................64



圖表目錄
圖一、CaMV 35S::McCTR1基因之阿拉伯芥突變株ctr1轉殖植株GUS活性及形態分析......................................................33
圖二、過量表達McCTR1菸草轉殖株T1葉片之GUS活性組織化學染色分析.. ...................................................34
圖三、菸草CaMV 35S::McCTR1擬轉殖株之南方氏雜交分析......................................................36
圖四、過量表達McCTR1 T1菸草轉殖植株之瓶內開花情形......................................................37
圖五、過量表達McCTR1基因於菸草植株生長情形......................................................38
圖六、過量表達McCTR1基因於阿拉伯芥植株生長情形......................................................39
圖七、過量表達McCTR1阿拉伯芥轉殖株、野生型及ctr1-1根長度之比較....................................................40
圖八、ACC處理對過量表達McCTR1阿拉伯芥轉殖植株幼苗生長之影響......................................................41
圖九、ACC處理對過量表達McCTR1阿拉伯芥轉殖株白化幼苗生長之影響.. ...................................................42
圖十、菸草McCTR1::GUS擬轉殖植株之南方氏雜交分析......................................................43
圖十一、McCTR1::GUS菸草轉殖植株之GUS活性組織化學染色分析......................................................44
圖十二、阿拉伯芥McCTR1::GUS轉殖株T3代之GUS活性表現分析......................................................45
圖十三、不同處理時間對阿拉伯芥McCTR1::GUS轉殖株T3代之GUS活性表現分析..............................................46
圖十四、以乙烯誘導阿拉伯芥McCTR1::GUS轉殖株T3代之GUS活性表現分析... ..............................................47
圖十五、以植物荷爾蒙誘導阿拉伯芥McCTR1::GUS轉殖株T3代之GUS活性表現分析.. .........................................48
圖十六、以生長素誘導阿拉伯芥McCTR1::GUS擬轉殖株T3代之GUS活性表現分................................................49
圖十七、以醣類進行McCTR1::GUS基因表達之誘導.............50
圖十八、光與溫度對McCTR1::GUS基因表達之影響.............51
圖十九、以創傷誘導進行McCTR1::GUS基因表達之影響.........52

表一、CaMV 35S::McCTR1轉殖於阿拉伯芥突變株ctr1之T2子代遺傳分離率分析..............................................53
表二、阿拉伯芥CaMV 35S::McCTR1轉殖株T2子代遺傳分離率分析......................................................54
表三、阿拉伯芥McCTR1::GUS轉殖株T2子代遺傳分離率分析......................................................55
胡慧琳. 2002. 香蕉CTR1同源基因之選殖與分析. 國立台灣大學園藝學研究所碩士論文.
蘇世珩. 2004. 苦瓜CTR1同源基因之選殖與表現分析. 國立台灣大學園藝學研究所碩士論文.
郭純德. 1987. 苦瓜果實採收成熟度與採收後生理之研究. 國立台灣大學園藝學研究所碩士論文。
Abeles F. B., P. W. Morgan, and M. E. Saltveit, Jr. 1992. Ethylene in Plant Biology. Academic Press, Inc (San Diego). 2 nd. edition.
Adams-Phillips, L., C. Barry, P. Kannan, J. Leclercq, M. Bouzayen, and J. Giovannoni. 2004. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol. Biol. 54: 387-404.
Alonso, J. M., T. Hirayama, G. Roman, S. Nourizadeh, and J. R. Ecker. 1999. EIN2, a bifunctional transducer of ethylene and stress response in Arabidopsis. Science 284: 2148-2152.
Alonso, J. M., Stepanova, A. N., Solano, R., Wisman, E., Ferrari, S., Ausubel F. M., and Ecker, J. R. 2003. Five components of the ethylene-response pathway identified in a screen for weak ethylene- insensitive mutants in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 2992-2997.
Binder, B. M., L. A. Mortimore, A. N. Stepanova, J. R. Ecker, and A. B. Bleecker. 2004a. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiol. 136: 2921-2927.
Binder, B. M., C. O''Malley R., W. Wang, J. M. Moore, B. M. Parks, E. P. Spalding, and A. B. Bleecker. 2004b. Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis. Plant Physiol. 136: 2913-2920.
Bleecker, A. B., M. A. Estelle, C. Somerville, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 1086-1089.
Bleecker, A. B. 1999. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci. 4: 269-274
Bucher, D., and P. E. Pilet. 1983. Auxin effects on root growth and ethylene production. Cell Mol. Life Sci. 39:493-494.
Chang, C., and R. Stadler. 2001. Ethylene hormone receptor action in Arabidopsis. Bio. Essays 23: 619-627.
Chang, C., S. F. Kwork, A. B. Bleecker, and E. M. Meyerowitz. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539-544.
Chao, Q., M. Rothenberg, R. Solano, G. Roman, W. Terzagi, and J. R. Ecker. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89: 1133-1144.
Chen, Y. F., M. D. Randlett, J. L. Findell, and G. E. Schaller. 2002. Localization of the ethylene ETR1 to endoplasmic reticulum of Arabidopsis. J. Biol. Chem. 277: 19861-19866.
Chen, Y. F., N. Etheridge, and G. E. Schaller. 2005. Ethylene signal transduction. Ann. Bot. 95: 901-915.
Clark, K. L., P. B. Larsen, X. Wang, and C. Chang. 1998. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc. Natl. Acad. Sci. USA 95: 5401-5406.
Dellaporta, S. L., J. Wood, and J, B, Hicks. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19-21.
De Paepe, A., M. Vuylsteke, P. Van Hummelen, M. Zabeau, and D. Van Der Straeten. 2004. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J. 39:537–559
De Paepe, A., and D. Van der Straeten. 2005. Ethylene biosynthesis and signaling: an overview. Vitam. Horm. 72: 399-430.
El-Sharkawy, I., B. Jones, Z. G. Li, J. M. Lelievre, J. C. Pech, and A. Latche. 2003. Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (Pyrus communis L.) with/without cold requirement. J. Exp. Bot. 54: 1615-1625.
Fields, S. and R. Sternglanz. 1994. The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 10: 286-292.
Gagne, J. M., J. Smalle, D. J. Gingerich, J. M. Wolker, S. D. Yoo, S. Yanagisawa, and R. D. Vierstra. 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA 101: 6803-6808.
Gane, R. 1934. Production of ethylene by some ripening fruits. Nature 134:1008.
Gamble, R. L., X. Qu, and G. E. Schaller. 2002. Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol. 128: 1428-1438.
Gao, Z., Y. F. Chen, M. D. Randlett, X. C. Zhao, J. L. Findell, J. J. Kieber, and G. E. Schaller. 2003. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J. Biol. Chem. 278: 34725-34732.
Gibson, S. I., R. J. Laby, and D. Kim. 2001. The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem. Biophys. Res. Commun. 280: 196-203.
Guo, H., and J. R. Ecker. 2003. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependment proteolysis of EIN3 transcription factor. Cell 115: 667-677.
Guo, H., and J. R. Ecker. 2004. The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol. 7: 40-49.
Hamilton, A. J., G. W. Lycett, and D. Grierson. 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284-287.
Hall, A. E., J. L. Findell, G. E. Schaller, E. C. Sisler, and A. B. Bleecker. 2000. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol. 123: 1449-1458.
Hall, A. E., and A. B. Bleecker. 2003. Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15: 2032-2041.
Hass, C., J. Lohrmann, V. Albrecht, U. Sweere, F. Hummel, S. D. Yoo, I. Hwang, T. Zhu, E. Schafer, J. Kudla, and K. Harter. 2004. The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. Embo J. 23: 3290-3302.
Hirayama, T., J. J. Kieber, N. Hirayama, M. Kogan, P. Guzman, S. Nourizadeh, J. M. Alonso, W. P. Dailey, A. Dancis, and J. R. Ecker. 1999. Responsive-to antagonist1, a menkes/wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383-393.
Hua, J., C. Chang, Q. Sun, and E. M. Meyerowitz. 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269: 1712–1714.
Hua, J., and E. M. Meyerowitz. 1998. Ethylene response are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271.
Hua, J., H. Sakai, S. Nourizadeh, Q. G. Chen, A. B. Bleecker, J. R. Ecker, and E. M. Meyerowitz. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10: 1321-1332.
Huang, Y., H. Li, C. E. Hutchison, J. Laskey, and J. J. Kieber. 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 33: 221-233.
Imanishi, S., H. Mori, and M. Nagata. 2001. Ethylene receptor gene homologue from tomato-ripening mutant Nr-2. Plant Cell Physiol. 42: s83.
Jun, S. H., M. J. Han, S. Lee, Y. S. Seo, W. T. Kim, and G. An. 2004. OsEIN2 is a positive component in ethylene signaling in rice. Plant Cell Physiol. 45: 281-289.
Kieber, J. J., M. Rothenberg, G. Roman, K. A. Feldmann, and J. R. Ecker. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinase. Cell 72: 427-441.
Klee, H. J. 2002. Control of ethylene-mediated processes in tomato at the level of receptors. J. Exp. Bot. 53: 2057-2063.
Kovtun, Y., W. L. Chiu, W. Zeng, and J. Sheen. 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716-720.
Kuroda, S., Y. Hirose, M. Shiraishi, E. Davies, and S. Abe. 2004. Co-expression of an ethylene receptor gene, ERS1, and ethylene signaling regulator gene, CTR1, in Delphinium during abscission of florets. Plant Physiol. Biochem. 42: 745-751.
Larkindale, J., and M. R. Knight. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128: 682-695.
Larsen, P. B., and C. Chang. 2001. The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol. 125: 1061-1073.
Lashbrook, C. C., D. M. Tieman, and H. J. Klee. 1998. Differential regulation of the tomato ETR gene family throughout plant development. Plant J. 15: 243-252.
Leclercq, J., L. C. Adams-Phillips, H. Zegzouti, B. Jones, A. Latche, J. J. Giovannoni, J. C. Pech, and M. Bouzayen. 2002. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol. 130: 1132-1142.
Leubner-Metzger, G., L. Petruzzelli, R. Waldvogel, R. Vögeli-Lange, and F. Meins Jr. 199. Ethylene responsive element binding protein (EREBP). expression and the transcriptional regulation of class I. ß-1,3-glucanase during tobacco seed germination. Plant Mol. Biol. 38: 785-795.
Liu, Y., M. Schiff, and S. P. Dinesh-Kumar. 2002. Virus-induced gene silencing in tomato. Plant J. 31: 777-786.
Liu, Y., and S. Zhang. 2004. Phosphorylation of 1-aminocyclopropane-1- carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386-3399.
Marr, K. L., Y. M. Xia, and K. B. Nirmal. 2004. Allozyme, morphological and nutritional analysis Bearing on the domestication of Momordica charantia L. (Cucurbitaceae). Econ. Bot. 58: 435–455.
Mehta, P. K., T. I. Hale, and P. Christen. 1993. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur. J. Biochem. 214: 549-561.
Muller, R., C. A. Owen, Z. T. Xue, M. Welander, and B. M. Stummann. 2002. Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. J. Exp. Bot. 53: 1223-1225.
Neljubov, D. N. 1901. Uber die horizontale Nutation der Stenel von Pisium sativum und einiger anderen Pflanzen. Beih. Bot. Centralbh. 10: 129.139.
Novikova, G. V., I. E. Moshkov, A. R. Smith, and M. A. Hall. 2000. The effect of ethylene on MAPKinase-like activity in Arabidopsis thaliana. FEBS Lett. 474: 29-32.
Ohme-Takagi, M., and H. Shinshi. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173-182.
O''Malley, R. C., F. I. Rodriguez, J. J. Esch, B. M. Binder, P. O''Donnell, H. J. Klee, and A. B. Bleecker. 2005. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J. 41: 651-659.
Ouaked, F., W. Rozhon, D. Lecourieux, and H. Hirt. 2003. A MAPK pathway mediates ethylene signaling in plants. EMBO J. 22: 1282-1288.
Potuschak, T., E. Lechner, Y. Parmentier, S. Yanagisawa, S. Grave, C. Koncz, and P. Genschik. 2003. EIN3-dependment regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115: 679-689.
Qu, X., and G. E. Schaller. 2004. Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol. 136: 2961-2970.
Raghavan, C., E. K. Ong, M. J. Dalling, and T. W. Stevenson. 2006. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct. Integr. Genomics 6: 60-70.
Ravanel, S., B. Gakiere, D. Job, and R. Douce. 1998. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA 95:7805-7812.
Rodriguez, F. I., J. J. Esch, A. E. Hall, B. M. Binder, G. E. Schaller, and A. B. Bleecker. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283: 996-998.
Rolland, F., B. Moore, and J. Sheen. 2002. Sugar sensing and signaling in plants. Plant Cell: S185-S205.
Rolland, F., and J. Sheen. 2005. Sugar sensing and signaling networks in plants. Biochem. Soc. Trans. 33: 269-271.
Roman, G., B. Lubarsky, J. J. Kieber, M. Rothenberg, and J. R. Ecker. 1995. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana five novel mutant loci integrated into a stress-response pathway. Genetics 139:1393-1409.
Sakai, S., and H. Imaseki. 1971. Auxin-induced ethylene production by mungbean hypocotyl segments. Plant Cell Physiol. 12: 349-359.
Sakai, H., J. Hua, Q. G. Chen, C. Chang, L. J. Medrano, A. B. Bleecker, and E. M. Meyerowitz. 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. U S A. 95: 5812-5817.
Schaller, G. E., and A. B. Bleecker. 1995. Ethlyene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270: 1809-1811.
Schaller, G. E., A. N. Ladd, M. B. Lanahan, J. M. Spanbauer, and A. B. Bleecker. 1995. The ethylene response mediator ETR1 from Arabidopsis forms a disulfide- linked dimmer. J. Biol. Chem. 270: 12526-12530.
Schaller, G. E., and J. J. Kieber. 2002. Ethylene. In: Somerville, C. R., and E. M. Meyerowitz (eds.) The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD.
Shibuya, K., M. Nagata, N. Tanikawa, T. Yoshioka, T. Hashiba, and S. Satoh. 2002. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J. Exp. Bot. 53: 399-406.
Solano, R., A. Stepanova, Q. Chao, and J. R. Ecker. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12: 3703-3714.
Stepanova, A. N., J. M. Hoyt, A. A. Hamilton, and J. M. Alonso. 2005. A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17: 2230-2242.
Tieman, D. M., and H. J. Klee. 1999. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol. 120: 165-172.
Trainotti, L., A. Pavanello, and G. Casadoro. 2005. Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits. J. Exp. Bot. 56: 2037-2046.
Van der Krieken, W. M., A. F. Croes, M. J. M. Smuldersl, and G. J. Wullems. 1990. Cytokinins and flower bud formation in vitro in tobacco. Plant Physiol. 92:565-569.
Van Zhong, G., and J. K. Burns. 2003. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol. Biol. 53:117–131.
Voelker, T. A., J. Moreno, and M. J. Chrispeels. 1990. Expression analysis of a pseudogene in transgenic tobacco: A frameshift mutation prevents mRNA accumulation. Plant Cell 2:255-261.
Wang, K. L., H. Li, and J. R. Ecker. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14: 131-151.
Wang, W., A. E. Hall, R. O''Malley, and A. B. Bleecker. 2003. Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc. Natl. Acad. Sci. USA. 100: 352-357.
Wang, K. L. C., H. Yoshida, C. Lurin, J. R. Ecker. 2004. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428: 945-950.
Wilkinson, J. Q., M. B. Lanahan, H. C. Yen, J. J. Giovannoni, and H. J. Klee. 1995. An ethylene-inducible component of signal transduction encoded by never-ripe. Science 270: 1807-1809.
Woeste, K. E., and J. J. Kieber. 2000. A strong loss- of function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12:443-455.
Yang, S. F., and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189.
Yanagisawa, S., S. D. Yoo, and J. Sheen. 2003. Differential regulation of EIN3 stability by glucose and ethylene signaling in plants. Nature 425: 521-525.
Yamagami, T., A. Tsuchisaka, K. Yamada, W. F. Haddon, L. A. Harden, and A. Theologis. 2003. Biochemical diversity among the 1-amino-cyclopropane-1- carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278: 49102-49112.
Yamasaki, S., N. Fujii, and H. Takahashi. 2000. The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol. 41: 608-616.
Zhao, X. C., X. Qu, D. E. Mathews, and G. E. Schaller. 2002. Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol. 130: 1983-1991.
Zhou, D., P. Kalaitzis, A. K. Mattoo, and M. L. Tucker. 1996. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. Plant Mol. Biol. 30: 1331-1338.
Zhou, L., J. C. Jang, T. L. Jones, and J. Sheen. 1998. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc. Natl. Acad. Sci. USA 95: 10294-10299.
Zhou, H. L., W. H. Cao, Y. R. Cao, J. Liu, Y. J. Hao, J. S. Zhang, and S. Y. Chen. 2006. Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett. 580: 1239-1250.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top