跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/15 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈榮壽
研究生(外文):Rong-Show Shen
論文名稱:黛粉葉腋芽培養與體胚發生再生系統之建立
論文名稱(外文):Establishment of regeneration system via axillary bud culture and somatic embryogenesis in Dieffenbachia spp.
指導教授:李哖李哖引用關係
指導教授(外文):Nean Lee
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:195
中文關鍵詞:黛粉葉微體繁殖腋芽形成體胚發生
外文關鍵詞:Dieffenbachiamicropropagationaxillary bud formationsomatic embryogenesis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為增加黛粉葉微體繁殖培植體供給來源與解決內生污染,選用兩個優良品系之成熟莖段,預處理BA進行潛伏芽體誘發,顯示潛伏芽體之誘發隨著BA濃度(0-750 mg/L)增加而遞增;誘發側芽增加數,複莖性品系(Dieffenbachia Chiada-84 #1012)比單莖性品系(Dieffenbachia Chiada-84 #0804)有較多芽體數,處理濃度以750 mg/L BA 效果最佳。而抗生素預處理對黛粉葉腋芽培植體離體培養污染之影響,未經抗生素處理者幾近全數污染。然以100 mg/L Rifampicin + 100 mg/L Gentamycin 或 100 mg/L Rifampicin + 100 mg/L Gentamycin + 150 mg/L Streptomycin組合濃度處理者,具有顯著降低污染率的效果分別為60%及50%;克服內生菌污染而建立初代無菌培養之腋芽培植體,芽體再生率僅達70%-75%,惟平均每一腋芽培植體芽體增殖數不多為1.2-1.4個,可知經抗生素處裡形態發生潛能降低,再生芽體之生長也顯現抑制現象。
而在黛粉葉無病原培植體準備、無菌培養建立與芽體增殖系統之建構顯示,莖頂分生組織培養於MS基礎培養基含1 mg/L NAA及1 mg/L TDZ培養15週後,最小之莖頂(0.1 x 0.25mm)培植體具有20%的存活率,較大之莖頂生長點(0.90 × 1.20mm)培植體,則顯現高繁殖潛力獲得12.3個再生芽體;另以4種大小黛粉葉腋芽分生組織為培植體來源,剝除3或4片芽鞘數的存活率可達30-35%,同時也顯現剝掉1片芽鞘的生長點培植體平均每一個反應培植體可達11.2個再生芽體;此等結果顯現利用腋芽生長點作為無病原培植體來源可降低黛粉葉內部感染,建立健康分生苗再生體系。此外,以人工乾旱逆境6週枝梢腋芽,進行精細解剖切取腋芽分生組織培養。顯示剝除2至4片芽鞘之生長點培植體,其存活成功率可達80-92.5%,有效降低內生病原菌感染之應用價值。另於培養方式與芽體增殖試驗可知,次級母莖培植體在TDZ濃度為1、5或10mg/L之液體培養者,顯著具有較高的芽體產量,平均芽體形成數可達5-6倍以上的繁殖潛力;而2節短莖培植於液體培養者,其芽體形成繁殖率僅達2倍左右,但芽體生長呈現較為整齊一致;提供黛粉葉微體繁殖種苗量化增殖方式之重要參考。
此外,利用短暫浸漬系統建立快速有效率的黛粉葉微枝梢大量生產體系。顯示以微體繁殖再生枝梢之2節短莖或母莖作為培植體,在MS培養基含1mg/L NAA與0.1-5.0mg/L TDZ或0.1-5.0 mg/L BA組合,在短暫浸漬系統培養容器中裝入330mL液體培養基可誘導產生大量叢生枝梢。尤其在培養基含有5mg/L TDZ之處理組,平均一個2節短莖或母莖培植體分別可得24.5及59.2個枝梢再生,此一產量為傳統固體培養微枝梢產量的3.3-8倍。利用短暫浸漬系統在微枝梢的生產上產生快速且大量的經濟效益,有助於黛粉葉微體繁殖微枝梢量產體系的建立。叢生枝梢經馴化出瓶,以500 mg/kg NAA粉劑預處理,扦插於穴盤噴霧加濕環境,枝梢長度大於3.0㎝之微插穗扦插後30天存活率達80-100%;而叢生枝梢團塊分割成1/4分割或1/2分割處理者,亦得83.3-100%存活率,並可於30天發根期長成緊密充實之株型,可利用於黛粉葉優質採穗母株建立。
另外為了了解生長調節在黛粉葉雄花序培植體體胚發生與植株再生的效果。雄花序培植體培養於修改之1/2 MS含2%蔗糖、1%葡萄糖與0.18%水晶洋菜的固體培養基,顯示在0.5 mg/L Kinetin組合2,4-D為4.0 mg/L或5.1 mg/L等觀察到較高胚狀體發生率為26.7%;根據胚狀體形成率分析黛粉葉體胚發生潛能,顯示2,4-D濃度的增加,與黛粉葉體胚發生頻率呈現顯著相關(R2=0.94)。再依前項結果修改生長素為2,4-D、 Dicamba及Picloram等生長素參試,可知Dicamba、Picloram在濃度為2mg/L培養基,培養第8週能夠獲得強胚性癒傷組織發生,其中2mg/L Dicamba達到指數 IV的胚性癒傷組織指數為72.1%為最高,在12週培養可見30%的成熟體胚形成,平均每個雄花序培植體可得22.2體胚,顯著高於其它處理別。再經修改生長調節劑以2,4-D 4mg/L組合TDZ 0.5-1.0mg/L之處理,進一步誘致高頻率球狀體胚發生率達100%,平均產生32.1-38.2個成熟體胚,少數成熟體胚偶發性轉化獲得再生小植株。
因此,為了更有效提升黛粉葉體胚發生量化增殖與胚苗轉化。雄花序培植體於半量MS基本鹽類,添加20 g/L蔗糖、10 g/L葡萄糖及1.8 g/L Gelrite等為基礎培養基,顯示在2 mg/L Dicamba及0.5 mg/L TDZ組合,具有最高初級體胚發生頻率(100%),以及最多盾狀體胚形成數達75.2個,對黛粉葉雄花序培植體高效率體胚發生的促進,具顯著的效果。再以前一試驗均質初級體胚,作為次級培植體來源,繼代培養於相同基本培養基添加2 mg/L Dicamba及TDZ(0.5、1mg/L),培養13週後顯現最高效率(100%)的次級體胚發生頻率,次級球狀體胚形成數則達34.3及33.0個,顯示此等培養基組成,有效的促進次級體胚發生和體胚量化增殖。此外,在1/2 MS 添加150 mL/L椰子水之培養基組成,成熟次級體胚(子葉鞘胚)之胚苗轉化試驗顯示,大小約為4-5 mm之鞘葉胚,培養在0.5%葡萄糖及1.0 mg/L TDZ濃度之胚苗轉化率最高達73.3%;平均每一培植體胚苗轉化獲得之再生植株可達7.8個,且可發育成為具形態雙極性之獨立個體。胚苗轉化再生植株,經過馴化出瓶種植之穴盤苗可在溫室中表現正常生育。
In this research the influence of pathogen-free explant preparation on aseptic culture and shoot proliferation in Dieffenbachia ‘Starshine’ was study. Using different sizes of apical meristem as initial pathogen-free explants and cultured on solidified Murashige and Skoog (MS) medium with 1mg/L NAA and 1mg/L TDZ for 15 weeks. The 20% of survival rate were obtained from the minimum size (0.1x0.25mm) of shoot tip explant, and 12.3 shoots were regenerated from the larger size (0.9x1.2mm) of shoot tip explant during primary aseptic culture. Moreover, tests used 4 sizes of axillary bud meristem as initial pathogen-free explant for primary aseptic culture. Result demonstrates that removed 3 or 4 coleoptiles of axillary bud explant, gave the survival rate of 30-35%. But, on average, 11.2 shoots regenerated from excided 1 coleoptile of axillary bud explant. These results indicated using apical meristem as pathogen-free explant gave optimize information for primary aseptic culture in Dieffenbachia ‘Starshine. Furthermore, pretreatment of stock plants with 6-week drought stress and further dissected axillary bud under aseptic condition as pathogen-free explants for primary aseptic culture. Results show the explant preparation procedure gave the high survival rate was 80-92.5% from removed 2-4 coleoptiles of axillary bud explant. This result suggests using axillary bud explant dissection and treating with drought stress could escape contamination from the interior contaminants. At the same procedure, more than 90% of survival rate was observed in axillary bud explants for successfully established of primary aseptic culture between tested cultivars(D. cv. Rudolph Roehrs and D. cv. Jupiter). In addition, the influence of culture methods and TDZ concentration on shoot multiplication were investigated. For shoot multiplication, concentration of 1, 5, and 10mg/L TDZ in the liquid culture were found that shoot yields have a significant effect achieved 5-6 folds. While, 2-nodal explant was cultured in liquid medium only obtained 2 folds of multiplication rate, but compared to solid culture, the regenerated shoots were more rapid growth and uniformity during subculture. This result suggests that liquid culture can significantly enhance axillary shoot proliferation from stock stem explants and 2-nodal explants for mass multiplication in Dieffenbachia seedlings.
A rapid and efficient procedure is described for mass multiplication of microshoots using temporary immersion system (TIS) in dieffenbachia (Dieffenbachia ‘Starshine’). Multiple shoot proliferation was induced from 2-nodal and stock-stem explants on Murashige and Skoog (MS) media supplemented with 1 mg/L NAA and 0.1-5.0 mg/L thidiazuron (TDZ) or BA. Especially, the 2-nodal or stock-stem explants cultured under TIS on 5mg/L TDZ enriched medium had the highest shoot yield which was 24.5 and 59.2, respectively, the multiplication rate increased by 3.3-8 folds, over that obtained from conventional solid support systems. Therefore, the scheme for the rapid microshoot propagation of dieffenbachia using temporary immersion system had commercial efficiency. In addition, elongated multiple shoots after acclimatization, taken from the temporary immersion system, pretreated with 500mg/dm3 NAA then were cut and planted in plug with soilless mix under mist propagation condition to prevent desiccation. Survival was investigated after 30 days, microshoots taller than 3.0㎝ had the highest survival rate, which achieved 80-100%. Moreover, the shoot cluster was segmented into 1/4 or 1/2 section as propagules; the survival rate was 83.3-100%. In this production scheme, shoot cluster could be established a system of superior stock-plant for use in dieffenbachia cuttage.
A method for the somatic embryogenesis and subsequent plant regeneration for Dieffenbachia ‘Tiki’ hybrids was described. Male inflorescence explants isolated from spadix of flowering plants cultured in vitro, formed embryogenic calli on surfaces of inflorescence axis within eight weeks of culture on full-strength Murashiage and Skoog (MS) medium with 4-6 mg/L 2,4-D. Somatic embryogenesis and embryoid were induced using a modified half-strength MS combination of 2 % sucrose with 1 % glucose, 0.18 % Gelrite for the basal medium, supplemented with 4.0 to 5.1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L Kinetin. Male inflorescence explants transfer to modified half-strength MS basal medium with 0.5mg/L Kinetin and 4mg/L 2,4-D(or 2-4mg/L Dicamba)resulted in somatic embryogenesis at frequencies of 45-72.1% with an average of 13.3-22.2 somatic embryos per responding explant. Furthermore, at the same culture condition, male inflorescence explants were cultured onto half-strength MS basal medium with 4mg/L 2,4-D and 0.5-1.0mg/L Thidiazuron(TDZ) for embryogenesis. TDZ was found to increase the somatic embryogenesis frequencies to 100% with an average of 32.1-38.2 somatic embryos per responding explant. At the same condition, a few somatic embryos developed into complete plantlets. In this study, we are the first to report somatic embryogenesis in Dieffenbachia ‘Tiki’ and the conversion of somatic embryos to greenhouse-established plant.
A regeneration system for improving the efficiency of somatic embryogenesis and emblings recovery from male inflorescences and somatic embryos of Dieffenbachia ‘Tiki’ were described. The highest percentage (100%) of primary somatic embryogenesis were achieved, and the highest yield of mature primary embryos were 75.5 on the half strength modified Murashige and Skoog(MS)medium with 2mg/L Dicamba and 0.5mg/L TDZ from male inflorescence explants. The results indicated that combination of Dicamba (2mg/L) and TDZ (0.5mg/L) significantly promoted high-efficiency multiplication of mature primary embryos in Dieffenbachia ‘Tiki’. Furthermore, the mature embryos of primary somatic embryogenesis were used as initial secondary explants for the induction of repetitive somatic embryogenesis. On the same culture medium supplemented with 2mg/L Dicamba and 0.5-1.0mg/L TDZ, the highest frequency (100%) of secondary embryo formation was obtained after 8-week subculture, and the highest number of mature secondary embryos per explant achieved 33.0-34.3 after 13-week subculture. Consequently, the same medium compositions were suitable for efficient repetitive somatic embryogenesis and multiplication of secondary embryos. In addition, emblings conversion of mature secondary embryos was investigated. The green secondary embryos of 4-5mm in size and the age of 8-10 weeks were used as explants, and cultured on half strength modified MS supplemented with 150mL/L coconut milk for somatic embryo conversion. The highest converted frequency of somatic embryo were 73.3%, and the number of converted emblings per explant reached 7.8 at 0.5% glucose and 1.0mg/L TDZ combination. Plantlets conversion from embryo was successfully acclimatized to greenhouse conditions. This technique could have significant industry application in dieffenbachia micropropagation, based on it has high efficiency of somatic embryo formation and high level of plant recovery.
目 錄(Contents)

第一章 緒論...................................................................1-1

第二章 前人研究..............................................................2-1
一. 黛粉葉之微體繁殖............................................................2-1
(一)腋芽形成之再生體系..........................................................2-1
(二)不定芽形成之再生體系.......................................................2-3
(三)體胚發生再生體系.............................................................2-4
二. 外加生長調節劑對體胚發生之影響........................................2-5
(一)植物生長調節劑在體胚發生之誘導效應...................................2-6
(二)植物生長調節劑在體胚增殖的效應........................................2-9
(三)植物生長調節劑在體胚表達的影響.......................................2-10
(四)植物生長調節劑在體胚成熟和胚苗轉化的影響........................2-11
三. 短暫浸漬系統的應用........................................................2-13
(一) 短暫浸漬增殖系統的種類與利用.........................................2-13
(二) 短暫浸漬系統影響培植體增殖的因子...................................2-15
1. 浸漬時間......................................................................2-15
2. 培養基量與培養容器大小..................................................2-15
3. 通氣條件(自然與強制換氣) ...............................................2-16
(三)短暫浸漬系統於微體繁殖應用實例.......................................2-16
1. 短暫浸漬系統在蝴蝶蘭擬原球體增殖.....................................2-17
2.蘋果根砧之微枝梢增殖........................................................2-17
3.大蒜小鱗莖增殖.................................................................2-18
參考文獻............................................................................2-19

第三章 芐氨基嘌呤增進側芽萌發及抗生素預處理對黛粉葉腋芽培植體無菌培養建立之影響.......................................3-1
摘 要...............................................................................3-1
前 言............................................................................... 3-3
材料與方法.........................................................................3-6
一.植物材料.
二.試驗方法
(一)BA預處理促進潛伏腋芽萌發.
(二)抗生素試驗
1.不同抗生素種類及濃度試驗
2.醣種類及濃度與抗生素試驗.
三、調查項目與統計分析.
結 果.................................................................................3-9
一、BA預處理對促進潛伏腋芽萌發之影響
二、抗生素預處理對黛粉葉腋芽培植體離體培養污染之影響
1. 不同抗生素種類及濃度試驗
2.醣種類及濃度與抗生素試驗
討 論..............................................................................3-12
Summary.........................................................................3-23
參考文獻...........................................................................3-25

第四章 黛粉葉莖頂培養與植株再生.................................4-1
摘 要................................................................................4-1
前 言................................................................................4-3
材料與方法.........................................................................4-5
一、培植體採取和準備
(一) 培植體表面消毒
(二) 培養基的調配
(三)培養環境
二、試驗方法.
(一) 黛粉葉無病原培植體選擇與初代無菌培養建立.
(二) 黛粉葉腋生枝梢(Axillary shoot formation)再生體繼代培養芽體增殖試驗
1. 細胞分裂素種類與濃度對芽體增殖影響
2. 培養方式與芽體增殖
三、調查項目與統計分析
結 果.................................................................................4-8
一.黛粉葉培植體選擇與初代無菌培養建立
二.黛粉葉腋生枝梢(Axillary shoot formation)再生體繼代培養芽體增殖試驗
1.細胞分裂素種類與濃度對芽體增殖影響
2.培養方式與芽體增殖試驗
討 論..............................................................................4-11
Summary.........................................................................4-30
參考文獻...........................................................................4-32

第五章 短暫浸漬系統在黛粉葉微枝梢大量繁殖之應用.............5-1
摘 要................................................................................5-1
前 言................................................................................5-2
材料與方法........................................................................................5-5
一、植物材料與培養基
(三) 培植體準備.
(三)短暫浸漬系統的裝置
(四)培養基的調配
(五)培養環境
二、試驗方法
(一)細胞分裂素在短暫浸漬系統黛粉葉枝梢增殖的影響
(二)短暫浸漬系統微枝梢瓶外馴化存活試驗
三、調查項目與統計分析
結 果................................................................................5-8
一. 細胞分裂素在短暫浸漬系統黛粉葉枝梢增殖的影響
二. 短暫浸漬系統微枝梢馴化存活試驗
討 論..............................................................................5-11
Summary.........................................................................5-25
參考文獻...........................................................................5-26

第六章 黛粉葉雄花序培養體胚發生與植株.......................6-1
摘 要.................................................................................6-1
前 言.................................................................................6-2
材料與方法.........................................................................6-4
一、培植體採取與準備.
二、試驗方法
1.胚性癒傷組織誘導
2.誘導癒傷組織及體胚發生
3.細胞分裂素種類及濃度與體胚發生
4.體胚發生之組織學觀察
三、調查項目與統計分析
結 果................................................................................6-7
一、生長素種類與濃度誘導黛粉葉雄花序培養癒傷組織發生之影響
二、2,4-D與Kinetin組合以及高活性生長素對黛粉葉雄花序培養癒傷組織增殖及體胚發生之影響
三、細胞分裂素種類及濃度與體胚發生
討 論................................................................................6-11
Summary.........................................................................6-31
參考文獻...........................................................................6-33

第七章 黛粉葉高效率量化體胚增殖與胚苗轉化.......... ....7-1
摘 要.................................................................................7-1
前 言................................................................................7-2
材料與方法.........................................................................7-4
一、培植體來源和培養環境
二、試驗方法
1.誘導初級體胚發生
2.重複體胚發生與增殖
3. 初級體胚或次級體胚繼代培養之胚苗轉換
三、調查項目與統計分析
結 果.................................................................................7-7
一、促進高效率之初級體胚發生
二、高效率重複體胚誘導與增殖
三、初期體胚與次級體胚之胚苗轉化
討 論..............................................................................7-10
Summary.........................................................................7-14
參考文獻...........................................................................7-28

第八章 論與建議..............................................................8-1


圖表目錄(List of Figures and Tables)

圖 3-1 . BA預處理和莖段節數對增進黛粉葉莖節繁殖體潛芽萌發.....3-14
圖 3-2. 二黛粉葉品種側芽形成數與BA濃度之相關..........................3-15
圖 3-3. 二黛粉葉品種側芽形成數與繁殖體大小之相關......................3-16
圖 3-4. 抗生素預處理對白玉黛粉葉腋芽培植體離體培養污染之影響3-17
圖3-5. 抗生素頂處理對黛粉葉未污染腋芽培植體離體培養芽體形成百分率及芽體數之影響.................................................................3-18
圖 3-6. 抗生素預處理對黛粉葉腋芽培植體芽體增殖生長情況...........3-19
圖3-7. 不同醣類培養基添加抗生素對黛粉葉腋芽培植體離體培養污染之影響.......................................................................................3-20
圖3-8. 培養基添加醣類和抗生素對白玉黛粉葉腋芽培植體離體培養芽體形成之影響............................................................................3-21
圖 3-9. 抗生素對培植體的毒害與抑制生長之現象.............................3-22
圖 4-1. 黛粉葉人工乾旱6週後生長情形............................................4-15
圖 4-2. 黛粉葉莖頂分生組織無病原培植體準備及切取......................4-16
圖 4-3. 黛粉葉腋芽分生組織無病原培植體準備及切取......................4-17
圖4-4. 黛粉葉莖頂分生組織大小對存活率及芽體形成數無菌培養建立之影響.......................................................................................4-18
圖 4-5. 圖示黛粉葉莖頂分生組織培植體分化及芽體形成..................4-19
圖4-6. 黛粉葉三種大小莖頂分生組織培植體之芽體形成在6個培養週期之相關性...............................................................................4-20
圖4-7. 黛粉葉腋芽分生組織培植體分化及芽體形成..........................4-21
圖4-8. 黛粉葉腋芽分生組織大小在無菌培養存活率及芽體形成數之影響..............................................................................................4-22
圖4-9. 黛粉葉四種大小腋芽分生組織培植體之芽體形成與6個培養週期之相關性...............................................................................4-23
圖4-10. 乾旱逆境處理與無菌解剖技術對黛粉葉無菌培養腋芽分生組織存活率之影響............................................................................4-24
圖4-11. 乾旱逆境處理與無菌解剖技術對乳蘿黛粉葉與丘比特黛粉葉無菌培養腋芽分生組織存活率之影響...........................................4-25
圖4-12. 細胞分裂素濃度對黛粉葉母莖培植體芽體增殖之影響..........4-26
圖4-13. 細胞分裂素濃度對黛粉葉二芽培植體芽體增殖之影響………4-27
圖4-14. NAA與TDZ組合誘導黛粉葉母莖培植體芽體增殖…………..4-28
圖4-15. 培養方式與TDZ濃度對黛粉葉母莖與二芽培植體芽體增殖之影響..............................................................................................4-29
圖4-16.圖示培養方式及TDZ處理誘致黛粉葉短莖及莖段培植體芽體增殖..............................................................................................4-30
圖5-1. 短暫浸漬系統與TDZ濃度對黛粉葉枝梢增殖之影響...............5-13
圖5-2. 短暫浸漬系統與TDZ濃度對黛粉葉不同大小枝梢形成數之影響..............................................................................................5-14
圖5-3. 短暫浸漬系統與TDZ濃度對黛粉葉不同大小枝梢形成百分率之影響..............................................................................................5-15
圖5-4.短暫浸漬系統和固體培養增殖率及乾鮮重比較.........................5-16
圖5-5. 不同培植體與TDZ濃度為1mg/L和5 mg/L之枝梢形成與培養週期之相關性.............................................................................5-217
圖5-6、黛粉葉母莖培植體培養在MS培養基內含NAA 1mg/L和TDZ(0.1-5.0mg/L)的330mL短暫浸漬系統中獲致大量芽體增生.5-18
圖5-7.不同濃度BA處理對母莖培植體於短暫浸漬系統枝梢形成及鮮重之影響..........................................................................................5-19
圖5-8、圖示黛粉葉母莖培植體培養在MS培養基內含NAA 1mg/L和BA(0.1-5.0mg/L)的330mL短暫浸漬系統中獲致大量芽體增生.5-20
圖5-9、黛粉葉不同大小微枝梢經過30天的發根期對植株存活率影響.5-21
圖5-10. 黛粉葉短暫浸漬系統培養單一培植體叢生枝梢出瓶分離獲得大量微插穗.......................................................................................5-22
圖5-11、不同分割大小之枝叢經30天的發根期對植株存活率影響.......5-23
圖5-12. 圖示黛粉葉分割枝叢出瓶存活與發育。..................................5-24
圖6-1. 黛粉葉雄花序培養誘導癒傷組織形成之生長指數....................6-14
圖6-2. 黛粉葉雄花序誘導形成之非胚性(A)與胚性(B)癒合組織..6-16
圖6-3. 培養基添加不同2,4-D與kinetin濃度對黛粉葉雄花序培植體胚性癒合組織誘導及體胚發生之影響...............................................6-18
圖6-4. 培養基添加不同2,4-D濃度對黛粉葉雄花序培植體體胚發生頻率之關係.......................................................................................6-19
圖6-5. 生長素濃度對黛粉葉雄花序培植體體胚發生率之影響.............6-21
圖6-6. 黛粉葉雄花序培植體於含2,4-D培養基胚性癒合組織誘導及體胚發生..........................................................................................6-23
圖6-7. 黛粉葉雄花序培養誘導直接體胚發生......................................6-24
圖6-8. 黛粉葉雄花序培植體體胚形成數與生長數種類與濃度之關係..6-25
圖6-9. 細胞分裂素濃度對黛粉葉雄花序培植體體胚發生率之影響…..6-26
圖6-10. 細胞分裂素濃度對黛粉葉雄花序培植體盾狀胚形成之影響…6-27
圖6-11. 黛粉葉雄花序培養於1/2MS添加4mg/L 2,4-D及TDZ組合培養基誘導間接體胚發生及植株再生...............................................6-28
圖6-12. 黛粉葉雄花序培植體誘導體胚形成解剖特性.........................6-29
圖6-13. 掃描式電子顯微鏡觀察黛粉葉雄花序培植體胚性癒傷組織誘導及體胚組織發生............................................................................6-30
圖7-1. 不同濃度Dicamba 和 TDZ組合對黛粉葉雄花序培植體體胚誘導之影響.......................................................................................7-16
圖7-2. TDZ濃度與黛粉葉雄花序培植體體胚形成數之關係.................7-17
圖7-3. 黛粉葉雄花序培植體體胚發育之觀察......................................7-18
圖7-4. 黛粉葉雄花序培植體叢生體胚形成.........................................7-19
圖7-5. 黛粉葉雄花序培植體成熟體胚形成.........................................7-20
圖7-6. 不同濃度TDZ對黛粉葉次級體胚誘導與增殖之影響...............7-21
圖7-7. 黛粉葉重複體胚增殖及形態發生解剖......................................7-22
圖7-8. 葡萄糖和蔗糖對黛粉葉成熟初級體胚胚苗轉化培養存活率之影響..............................................................................................7-23
圖7-9. 葡萄糖和蔗糖濃度對黛粉葉成熟初級體胚胚苗轉化培養褐化率之影響......................................................................................7-24
圖7-10 醣類濃度對黛粉葉成熟初級體胚胚苗轉化之影響...................7-25
圖7-11. 醣類在黛粉葉初級體胚培養發育及發芽情形.........................7-26
圖7-12. 葡萄糖與TDZ濃度組合對成熟次級體胚胚苗轉化之影響......7-27
圖7-13.黛粉葉次級體胚發芽及植株再生之建立..................................7-28
表6-1.生長素濃度對黛粉葉雄花序培植體癒傷組織生長之影響………6-15
表6-2. 2,4-D與kinetin對黛粉葉雄花序培植體體胚形成之影響..........6-17
表6-3. 生長素濃度對黛粉葉雄花序培植體胚性癒傷組織生長之影響..6-20
表6-4.生長素之種類與濃度對黛粉葉雄花序培植體擬胚形成數之影響6-22
參考文獻

呂政璋. 2001. 三倍體香蕉cv. Raja胚性細胞極性化與非極化生長之調控與質量化體胚生產. 台灣大學園藝學研究所碩士論文.
胡文若. 1997. 黛粉葉葉片組織培養之研究. 國立中興大學園藝學系碩士論文.
黃怡菁. 1994. 香蕉細胞懸浮培養及原生質體培養體胚誘導之研究. 國立台灣大學園藝學研究所博士論文.
黃學林、李筱菊. 2000. 植物體細胞胚胎發生. 科學農業 48:120-127.
劉祖慧. 1990. 觀音棕竹與黛粉葉的組織培養. 國立台灣大學園藝學研究所碩士論文.
Afreen, F., S. M. A. Zobayed. and T. Kozai. 2002. Photoautotrophic culture of coffea arabusta somatic embryos: development of a bioreactor for large-scale plantlet conversion from cotyledonary embryos. Ann. Bot. 90: 21-29.
Agarwal, S., K. Kanwar. and D. R. Sharma. 2004. Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Sci. Hort. 102: 359–368.
Agnieszka, I., W. Traud., R. Simon., W. Maria. and S. Margrethe. 2005. In vitro propagation of Hippeastrum × chmielii Chm. – influence of flurprimidol and the culture in solid or liquid medium and in temporary immersion systems. Plant Cell Tiss. Org. Cult. 83: 339–346.
Albarra, J., B. Bertrand., M. Lartaud. and H. Etienne. 2005. Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tiss. Org. Cult. 81:27–36.
Ahmed, R., S. D. Gupta. and D. N. De. 1996. Somatic embryogenesis and plant regeneration from leaf derived callus of winged bean (Psophocarpus tetragonolobus L.). Plant Cell Rep. 15: 531–535.
Alvard, D., F. Cote. and C. Teisson. 1993. Comparison of methods of liquid medium culture for banana micropropagation. Plant Cell Tiss. Org. Cult. 32: 55-60.
Amasino, R. 2005. 1955: kinetin arrives. The 50th anniversary of a new plant hormone. Plant Physiol. 138: 1177–1184.
Ammirato, P. V. 1977. Hormonal control of somatic embryo development from cultured cells of caraway. Plant Physiol. 59: 579–586.
Asano, Y., H. Katsumoto., C. Inokuma., S. Kaneko., Y. Ito. and A. Fujiie. 1996. Cytokinin and thiamine requirements and simulative effects of riboflavin and a-ketoglutaric acid on embryogenic callus induction from the seeds of Zoysia japonica Steud. J. Plant Physiol. 149: 413–417.
Asokan, M. P., S. K. O’Hair. and R. E. Litz. 1984. Rapid multiplication of Xanthosoma caracu by in vitro shoot tip culture. HortScience 19:885-886.
Bell, L. M., R. N. Trigiano. and B. V. Conger. 1993. Relationship of abscisic acid to somatic embryogenesis in Dactylis glomerata. Environ. Exp. Bot. 33: 495–499.
Blochl, A., G. Grenier-de March., M. Sourdioux., T. Peterbauer. and A. Richter. 2005. Induction of raffinose oligosaccharide biosynthesis by abscisic acid in somatic embryos of alfalfa (Medicago sativa L.). Plant Sci. 168: 1075–1082.
Bozhkov, P. V., L. H. Filonova. and S. von Arnold. 2002. A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol. Bioeng. 77: 658–667.
Brunner, I., A. l. Echegaray, and A. Rubluo. 1995. Isolation and characterization of bacterial contaminants from Dieffenbachia amoena Bull, Anthurium andreanum Linden and Spathiphyllum sp. Scott cultured in vitro. Sci. Hortic. 62:103-11.
Buchheim. J. A., S. M. Colburn. and J. P. Ranch. 1989. Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol. 89: 768–775.
Calic, D., S. Zdravkovic-Korac. and L. Radojevic. 2005. Secondary embryogenesis in androgenic embryo cultures of Aesculus ippocastanum L. Biol. Plant. 49: 435–438.
Carimi, F., F. De Pasquale. and F. G. Crescimanno. 1999. Somatic embryogenesis and plant regeneration from pistil thin cell layers of Citrus. Plant Cell Rep. 18: 935–940.
Castillo, B. and M. A. L. Smith. 1997. Direct somatic embryogenesis from Begonia gracilis explants. Plant Cell Rep. 16:385–388.
Chakrabarty, D. and K. Y. Paek. 2001. Recent advances in in vitro manipulation and propagation of medicinal plants. p.26–61. In: Proceedings of KSMCS International Symposium, 2001. The Korean Society of Medicinal Crop.
Chakrabarty, D., E. J. Hahn., Y. S. Yoon. and K. Y. Paek . 2003. Micropropagation of apple root stock ‘M9 EMLA’ using bioreactor. J. Hort. Sci. Biotec. 78: 605–609.
Chen, J. T. and W. C. Chang. 2001. Effects of auxins and cytokinins on direct somatic embryogenesis on leaf explants of Oncidium ‘Gower Ramsey’. Plant Growth Regul. 34: 229–232.
Cuenca, B., M. C. San-Jose., M. T. Martınez., A. Ballester. and A. M. Vieitez. 1999. Somatic embryogenesis from stem and leaf explants of Quercus robur L. Plant Cell Rep. 18: 538–543.
das Neves, L. O., S. R L. Duque., J. S. de Almeida. and P. S. Fevereiro. 1999. Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Rep. 18: 398–405.
Das, A. B., G. R. Rout. and P. Das. 1995. In vitro somatic embryogenesis from callus culture of the timber yielding tree Hardwickia binata Roxb. Plant Cell Rep. 15: 147–149.
Debergh, P. C. and L. J. Maene. 1981. A scheme for commercial propagation of ornamental plants by tissue culture. Sci. Hortic. 14:335-345.
Dong, J. Z. and D. I. Dunstan. 2000. Molecular biology of somatic embryogenesis in conifers. p51–87. In: Jain, S. M. and Minocha, S.C. (eds), Molecular Biology of Woody Plants, Vol. 1. Kluwer Academic Publishers, Dordrecht.
Durham, R. E. and W. A. Parrott. 1992. Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep. 11: 122–125.
Eeckhaut, T. G. R., Stefaan. P. O., Werbrouck, L. W. H., Leus, E. J., Bockstaele. V.,and P. C. Debergh. 2004. Chemically induced polyploidization in Spathiphyllum wallisii Regel through somatic embryogenesis. Plant Cell Tiss. Org. Cult. 78:241-246.

Escalant, J. V., C. Teisson., and F. Cote. 1994. Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). Plant J. Tiss. Cult. Asso. 30: 181-186.
Escalona, M., G. Samson., C. Borroto. and Y. Desjardins. 2003. Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cell. Dev. Biol. 39:651-656.
Escalona, M., J. C. Lorenzo., B. Gonzalez., M. Daquinta., J. L. Gonzalez., Y. Desjardins. and C. G. Borroto. 1999. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18: 743–748.
Etienne, H. and M. Brethouly. 2002. Temporary immersion systems in plant micropropagation. Plant Cell Tiss. Org. Cult. 69:215-231.
Feher, A., T. P. Pasternak. and D. Dudits. 2003. Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss. Org. Cult. 74: 201–228.
Feher, A., T. P. Pasternak., K. Otvos., P. Miskolczi. and D. Dudits. 2002. Induction of embryogenic competence in somatic plant cells: a review. Biologia 57: 5–12.
Fernandez, D., R. Silva. and A. Menendez-Yuffa. 2003. Transient gene expression in secondary somatic embryos from coffee tissues electroporated with the genes gus and bar. Electr. J. Biotechnol. 6: 29–38.
Francis, D. and D. A. Sorrell. 2001. The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul. 33:1-12.
Fujimura, T. and A. Komamine. 1975. Effects of various growth regulators on the embryogenesis in a carrot cell suspension culture. Plant Sci. Lett. 5: 359–364.
Gairi, A. and A. Rashid. 2004a. Direct differentiation of somatic embryos on different regions of intact seedlings of Azadirachta in response to thidiazuron. J. Plant Physiol. 161:1073–1077.
Gairi, A. and A. Rashid. 2004b. TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2,4-D. Plant Cell Tiss. Org. Cult. 76: 29–33.
Gaj, M. D. 2004. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul. 43:27–47.
Gallo-Meagher, M. and J. Green. 2002. Somatic embryogenesis and plant regeneration from immature embryos of saw palmetto, an important landscape and medicinal plant. Plant Cell Tiss. Org. Cult. 68: 253–256.
Geier, T. 1982. Morphogenesis and plant regeneration from spadix fragments of Anthurium scherzerianum. p137–138. In: Fujiwara, A. (ed.). Plant Tissue Culture. Japanese Association for Plant Tissue Culture, Tokyo, Japan.
Goebel-Tourand, I., M. C. Mauro., L. Sossountzov., E. Miginiac. and A. Deloire. 1993. Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell Tiss. Org. Cult. 33: 91–103.
Groll, J., D. J. Mycock., V. M. Gray. and S. Laminski. 2001. Secondary somatic embryogenesis of cassava on picloram supplemented media. Plant Cell Tiss. Org. Cult. 65: 201–210.
Gutierrez, P. and E. Rugini. 2004. Influence of plant growth regulators, carbon sources and iron on the cyclic secondary somatic embryogenesis and plant regeneration of transgenic cherry rootstock ‘Colt’ (Prunus avium ). Plant Cell Tiss. Org. Cult. 79:223–232.
Hamidah, M., A. G. A. Karim. and P. Debergh. 1997. Somatic embryogenesis and plant regeneration in Anthurium scherzerianum. Plant Cell, Tissue and Organ Culture 48: 189–193.
Hansen, M. 2000. ABA treatment and desiccation of microspore-derived embryos of cabbage (Brassica oleracea ssp. capitata L.) improves plant development. J. Plant Physiol. 156: 164–167.
Hasnae, B., S. Karima., C. Averil. and C. Hassan. 2000. Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell Tiss. Org. Cult. 61: 107–113.
Hazra, S., S. S. Sathaye. and A. F. Mascarenhas. 1989. Direct somatic embryogenesis in peanut (Arachis hypogaea). Bio. Technology 7: 949-955.
He, G.Y. and P.A. Lazzeri. 2001. Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119: 369–376.
Hernandez, I., C. Celestino. and M. Toribio. 2003. Vegetative propagation of Quercus suber L. by somatic embryogenesis. I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep. 21: 759–764.
Hita, O., C. Lafarga. and H. Guerra. 1997. Somatic embryogenesis from chickpea (Cicer arietinum L.) immature cotyledons: the effect of zeatin, gibberellic acid and indole-3-butyric acid. Acta Physiol. Plant. 19:33-338.
Huang, I. C., C. T. Shii. and S. S. Ma. 1996. Cycling growth characters in embryogenic suspension culture derived from male inflorescence callus of banana AAA subgroup Cavendish and ABB cultivars. China-France Plant Tissue Culture Symposium, CIRAD-Montpellier.
Hutchinson, M. J., S. KrishnaRaj. and P. K. Saxena. 1997. Inhibitory effect of GA3 on the development of thidiazuron induced somatic embryogenesis in geranium (Pelargonium hortorum Bailey) hypocotyl cultures. Plant Cell Rep. 16: 435–438.
Jimenez, V. M. 2001. Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev. Bras. Fisiol. Veg. 13: 196-223.
Jimenez,V. M. and F. Bangerth. 2000. Relationship between endogenous hormone levels in grapevine callus cultures and their morphogenetic behaviour. Vitis 39: 151–157.
Kamada, H. and H. Harada. 1981. Changes in the endogenous level and effects of abscisic acid during somatic embryogenesis of Daucus carota L. Plant Cell Physiol. 22: 1423–1429.
Khalil, S.M., K. T. Cheah., E. A. Perez., D. A. Gaskill. and J. S. Hu. 2002. Regeneration of banana (Musa spp. AAB cv. Dwarf Brazilian) via secondary somatic embryogenesis. Plant Cell Rep. 20: 1128–1134.
Kim, E. K. 2002. Propagation of multiple shoots and microbulbs using bioreactor system in garlic. MS Thesis, Chungbuk National University, Korea (Abstract).
Knauss, J. F. 1976. Atissue culture method for producting Dieffenbachia picta cv. Perfection free of fungi and bacteria. Proc. Fla. State Hort. Soc. 89:293-296.
Kochba, J., P. Spiegel-Roy., H. Neumann. and S. Saad. 1978. Stimulation of embryogenesis in Citrus ovular callus by ABA, Ethephon, CCC and Alar and its suppression by GA3. Pflanzen Physiol. 89: 427–432.
Koh, W. L. and C. S. Loh. 2000. Direct somatic embryogenesis, plant regeneration and in vitro flowering in rapid-cycling Brassica napus. Plant Cell Rep. 19: 1177–1183.
Komamine, A., R. Kawahara., M. Matsumoto., S. Sunabori., T. Toya., A. Fujiwara., M. Tsukuhara., J. Smith., M. Ito., H. Fukuda., K. Nomura. and T. Fujimura. 1992. Mechanisms of somatic embryogenesis in cell cultures: physiology, biochemistry, and molecular biology. In Vitro Cell. Dev. Biol. 28: 1–14
Kong, L. and E. C. Yeung .1994. Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci. 104: 71–80.
Kongbangkerd., A. and C. Wawrosch. 2003. Improved shoot regeneration from nodules of Charybdis numidica in a temporart immersion system. J. Hort. Sci. Biot. 78:650-655.
Krueger, S., C. Robacker. and W. Simonton. 1991. Culture of Amelanchier × grandiflora in a programmable micropropagation apparatus. Plant Cell Tiss. Org. Cult. 27:219-226.
Kuehnle, A. R. and N. Sugii. 1991. Callus induction and plantlet regeneration in tissue cultures of Hawaiian Anthuriums. HortScience 26:919–921.
Kuehnle, A.R., F. C. Chen., and N. Sugii. 1992. Somatic embryogenesis and plant regeneration in Anthurium andraeanum hybrids. Plant Cell Rep. 11: 438–442.
Kuklin, A. I., P. D. Denchev., A. I. Atanassov. and A. H. Scragg. 1994. Alfalfa embryo production in airlift vessels via direct somatic embryogenesis. Plant Cell Tiss. Org. Cult. 38: 19–23.
Lakshmanan, P. and A. Taji. 2000. Somatic embryogenesis in leguminous plants. Plant Biol. 2: 136–148.
Leathers, R. R., M. A. L. Smith. and A. J. Christie. 1995. Automation of the bioreactor process for mass propagation and secondary metabolism. p.187–214. In: Christie, J. A,, T. Kozai. and M. L. Smith. (eds.). Automation and Environmental Control in Plant Tissue Culture. Kluwer Academic Publishers, Dordrecht.
Li, L. and R. Qu. 2002. In vitro somatic embryogenesis in turf type bermudagrass: roles of abscisic acid and gibberellic acid, and occurrence of secondary somatic embryogenesis. Plant Breed. 121:155–158.
Lian, M. L., D. Chakrabarty. and K. Y. Paek. 2003. Bulblet formation from bulbscale segments of Lilium using bioreactor system. Biol. Plant. 46:199-203.
Litz, R. E. and R. A. Conover. 1977. Tissue culture propagation of some foliage plant. Proc. Fla. State Hort. Soc. 90:301-303.
Liu, C. M., Z. H. Xu. and N. H. Chua. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5: 621–630.
Manuel, C. J., R. G. Kosky., M. B. Perez., A. S. Pino., V. M. Vega., J. L.Torres., A. R. Cabrera., M. G. Garcıa. and J. C. Ventura. 2005. Production of yam microtubers using a temporary immersion system. Plant Cell Tiss. Org. Cult. 83: 103–107.
Martre, P., D. Lacan., D. Just. and C. Teisson. 2001. Physiological effects of temporary immersion on Hevea brasiliensis callus. Plant Cell Tiss. Org. Cult. 67:25-35.
Mauri, P. V. and J. A. Manzanera. 2004. Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.). In Vitro Cell Dev. Biol. Plant 40: 495–498.
McAlister, B., J. Finnie., M. P. Watt. and F. Blakeway. 2005. Use of the temporary immersion bioreactor system (RITA) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tiss. Org. Cult. 81: 347–358.
McFadden, L. A. 1961. Bacteria stem and leaf rot of dieffenbachia in Florida. Phytopathology 51:663-668.
McKersie, B. D. and D. C. W. Brown. 1996. Somatic embryogenesis and artificial seeds in forage legumes. Seed Sci. Res. 6:109–126.
Merkle, S. A., W. A. Parrot. and E. G. Williams. 1990. Applications of somatic embryogenesis and embryo cloning. p 67–101. In: Bhojwani, S. S. (ed.). Plant Tissue Culture: Applications and Limitations. Elsevier, Amsterdam.
Merkle, S.A., W. A. Parrott. and B. S. Flinn. 1995. Morphogenic aspects of somatic embryogenesis. p155–203. In: Thorpe, T. A. (ed.). In Vitro Embryogenesis in Plants. Kluwer Academic Publishers, Dordrecht.
Mondal, T. K., A. Bhattacharya. and P. S. Ahuja. 2001. Induction of synchronous secondary somatic embryogenesis in Camellia sinensis (L.) J. Plant Physiol. 158: 945–951.
Munnecke, D. E. 1960. Bacteria stem rot of dieffenbachia. Phytopathology 50:696-700.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473–497.
Nishiwaki, M., K. Fujino., Y. Koda., K. Masuda. and Y. Kikuta. 2000. Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211: 756–759.
Nomura, K. and A. Komamine. 1995. Physiological and biochemical aspects of somatic embryogenesis. p249–265. In: Thorpe, T. A. (ed.), In Vitro Embryogenesis in Plants. Kluwer Academic Publishers, Dordrecht.
Ogata, Y., M. Iizuka., D. Nakayama., M. Ikeda., H. Kamada. and T. Koshiba. 2005. Possible involvement of abscisic acid in the induction of secondary somatic embryogenesis on seed-coat derived carrot somatic embryos. Planta 221: 417–423.
Ozcan, S., M. Barghchi., S. Firek. and J. Draper. 1993. Efficient adventitious shoot regeneration and somatic embryogenesis in pea. Plant Cell Tiss. Org. Cult. 34: 271–277.
Paek, K.Y., D. Chakrabarty. and E. J. Hahn. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tiss. Org. Cult. 81: 287–300.
Panaia, M., T. Senaratna., K. W. Dixon. and K. Sivasitham. 2004. The role of cytokinins and thidiazuron in the stimulation of somatic embryogenesis in key members of the Restionaceae. Aust. J. Bot. 52: 257–267.
Park, S. Y., H. N. Murthy. and K. Y. Paek. 2000. Mass multiplication of protocorm like bodies using bioreactor system and subsequent plant regeneration in Phalaenopsis. Plant Cell, Tiss. Org. Cult. 63: 67–72
Park, S. Y., J. K. Ahn., W. Y. Lee., H. N. Murthy. and K. Y. Paek. 2005. Mass production of Eleutherococcus koreanum plantlets via somatic embryogenesis from root cultures and accumulation of eleutherosides in regenerants. Plant Sci. 168:1221–1225.
Parrott, W.A. and M. A. Bailey. 1993. Characterization of recurrent somatic embryogenesis of alfalfa on auxin-free medium. Plant Cell Tiss. Org. Cult. 32: 69–76.
Peggy, O. A. and K. V. Indra . 1982. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): Evidence for somatic embryogenesis. Protoplasma 110: 95-105.
Pinto, G., C. Santos., L. Neves. and C. Araujo. 2002. Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep. 21: 208–213.
Puigderrajols, P., C. Celestino., M. Suils., M. Toribio. and M. Molinas. 2000. Histology of organogenic and embryogenic responses in cotyledons of somatic embryos of Quercus suber L. Intl. J. Plant Sci. 161: 353–362.
Pullman, G. S., P. K. Gupta., R. Timmis., C. Carpenter., M. Kreitinger. and E. Welty. 2005. Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep. 24: 271–279.
Raemakers, C. J. J. M., E. Jacobsen. and R. G. F. Visser. 1995. Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81: 93–107.
Rajasekaran, K., J. Vine. and M. G. Mullins. 1982. Dormancy in somatic embryos and seeds of Vitis: changes in endogenous abscisic acid during embryogeny and germination. Planta 154: 139–144.
Reinert, J. 1959. Untersuchungen uber die morphogenese an gewebekulturen. Ber. Deutsch. Bot. Ges. 71: 15.
Rudus, I., E. Kepczynska. and J. Kepczynski. 2002. Regulation of Medicago sativa L. somatic embryogenesis by gibberellins. Plant Growth Regul. 36: 91–95.
Sagare, A. P., Y. L. Lee., T. C. Lin., C. C. Chen. and H. S. Tsay. 2000. Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae) – a medicinal plant. Plant Sci. 160: 139–147.
Sharma, V. K., A. Rao., A. Varshney. and S. L. Kothari. 1995. Comparison of developmental stages of inflorescence for high frequency plant regeneration in Triticum aestivum L. and T. durum Desf. Plant Cell Rep. 15: 227–231.
Sreenivasu, K., S. K. Malik., P. A. Kumar. and R. P. Sharma. 1998. Plant regeneration via somatic embryogenesis in pigeonpea (Cajanus cajan L.). Plant Cell Rep. 17: 294–297.
Stasolla, C., L. Kong., E. C. Yeung. and T. A. Thorpe. 2002. Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell. Dev. Biol. Plant 38: 93–105.
Steward, F. C., M. O. Mapes. and K. Mears. 1958. Growth and organized development of cultured cells. II: Organization in cultures grown from freely suspended cells. Am. J. Bot. 45:705–708.
Takeno, K., M. Koshioka., R. P. Pharis., K. Rajasekaran and M. G. Mullins. 1983. Endogenous gibberellin-like substances in somatic embryos of grape (Vitis vinifera, Vitis rupestris) in relation to embryogenesis and the chilling requirement for subsequent development of mature embryos. Plant Physiol. 73: 803–808.
Taylor, M. E. and J. F. Knauss. 1978. Tissue culture multiplication and subsequent handling of known pathogen-free Dieffenbachia maculate cv. Perfection. Proc. Fla. State. Hort. Soc. 91:233-235.
Teresa, O., S. Izabela, and N. Elzbieta. 1995. Adventitious shoot regeneration on explants of Anthurium, Codiaeum, Dieffenbachia, Gerbera, Rosa and Spathiphyllum for breeding purposes. Acta Hort. 420:115-117.
Thomas, T. L. 1993. Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5: 1401–1410.
Thorpe, T.A. 2000. Somatic embryogenesis: morphogenesis, physiology, biochemistry and molecular biology. Kor. J. Plant Tiss. Cult. 27: 245–258.
Tisserat, B. and C. Vandercook. 1985. Development of an automated plant culture system. Plant Cell Tiss. Org. Cult. 5:107-117.
Tokuji, Y. and K. Kuriyama. 2003. Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota). J. Plant Physiol. 160: 133–141.
Toribio, M., C. Fernandez., C. Celestino., M. T. Martınez., M. C. San-Jose. and A. M. Vieitez. 2004. Somatic embryogenesis in mature Quercus robur trees. Plant Cell Tiss. Org. Cult. 76:283–287.
von Arnold, S., I. Sabala., P. Bozhkov., J. Kyachok. and L. Filonova. 2002. Developmental pathways of somatic embryogenesis. Plant Cell Tiss. Org. Cult. 69: 233–249.
Vookova, B., R. Matusova. and A. Kormutak. 2003. Secondary somatic embryogenesis in Abies numidica. Biol. Plant. 46:513–517
Voylatzi, C. and D. G. Voyiatzis. 1989. In vitro shoot proliferation rate of Dieffenbachia exotica cultivar Marianna as affect by cytokinin, the number of recultures and the temperature. Scientia Hort. 40:271-277.
Wetzstein, H. Y. and C. M. Baker. 1993. The relationship between somatic embryo morphology and conversion in peanut (Arachis hypogaea L.). Plant Sci. 92: 81–89.
Xiao, J. N., X. L. Huang., Y. J. Wu., X. J. Li., M. D. Zhou. and F. Engelmann. 2004. Direct somatic embryogenesis induced from cotyledons of mango immature zygotic embryos. In Vitro Cell. Dev. Biol. Plant 40: 196–199.
Zenkteler, E., K. Wlodarczak. and M. Klosowska. 1997. The application of antibiotics and sulphonamide for eliminating Bacillus cereus during the micropropagation of infected Dieffenbachia picta Schott. Pathogen and Microbial Contamination Management in Micropropagation. p183-191.
Zhang, C. G., W. Li., Y. F. Mao., D. L. Zhao., W. Dong. and G. Q. Guo. 2005. Endogenous hormonal levels in Scutellaria baicalensis calli induced by thidiazuron. Russ. J. Plant Physiol. 52: 345–351.
Zhang, Q., J. Chen and R. J. Henny. 2006. Regeneration of Syngonium podophyllum ‘Variegatum’ through direct somatic embryogenesis. Plant Cell Tiss. Org. Cult. 84:181–188.
Zhu, L. H., X. Y. Li. and W. Margareta. 2005. Optimization of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell Tiss. Org. Cult. 81: 313–318.
Zobayed, S. M. A., S. J. Murcha., H. P. V. Rupasinghe. and P. K. Saxena. 2004. In vitro production and chemical characterization of St. John’s wort (Hypericum perforatum L. cv ‘New Stem’). Plant Sci. 166:333-340.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top