跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7fd3:5ffb:7a70:189b) 您好!臺灣時間:2024/12/11 06:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭惠中
研究生(外文):Hui-Chung Cheng
論文名稱:樟芝免疫調節蛋白ACA1異體表現之研究
論文名稱(外文):Studies on the Heterologous Expression of Immunomodulatory Protein ACA1 from Antrodia cinnamomea
指導教授:許輔許輔引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:168
中文關鍵詞:樟芝免疫調節蛋白異體表現大腸桿菌表現酵母菌表現活性探討穩定性
外文關鍵詞:Antrodia cinnamomeaimmunomodulatory proteinheterologous expressionE.coli expressionyeast expressionbioactivitystability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:961
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
樟芝具有我國特殊地域意義,是民間流傳已久的珍貴菇類。由於樟芝來源取得不易,因此可以利用蛋白質表現技術來表現樟芝中的有效成分,並解決市場需求。本實驗室已自樟芝菌絲體中純化出免疫調節蛋白ACA1,同時並發現此蛋白對小鼠具免疫調節活性,已進一步選殖出其核酸序列。本實驗進一步將此序列進行異體表現,以求大量生產重組ACA1蛋白。以GST融合蛋白表現系統表現ACA1可得一40 KDa大小的融合蛋白,但在切解融合蛋白GST後,重組ACA1的產量偏低。以pET32a(+) 表現系統成功地表現並純化出重組融合蛋白HIS-ACA1及無融合部分之純rACA1蛋白,每公升發酵液之產量各達10 mg與4 mg。帶有融合標記蛋白(HIS tag)的融合ACA1分子量為20 KDa,而純ACA1蛋白分子量為14 KDa。rACA1的等電點約為5.0。體外試驗結果顯示,重組ACA1蛋白可刺激小鼠巨噬細胞RAW264.7產生一氧化氮及TNF-α,同時可刺激小鼠脾細胞增生,具有劑量效應,且重組ACA1在熱處理、酸處理及乾燥處理後仍保有有高度活性。另以重組ACA1製備的四株單株抗體可專一地辨識到ACA1蛋白。除了建立兩個大腸桿菌表現系統外,wildtype aca1基因及yeast-favored aca1基因也經構築至持續性的表現載體pYEX-S1上,並在酵母菌中進行表現。結果顯示,在C端加上六個histidine氨基酸作為His tag的aca1基因表現狀況都比N端His tag的表現狀況來得高,但兩種aca1基因在酵母菌中的表現量並無顯著不同。綜合上述結果顯示,本實驗已建立了重組ACA1之原核與真核表現系統,所生產出的重組ACA1也證實與天然ACA1有相似的免疫調節效應。另外由於重組ACA1在仿工業加工處理下仍可保持良好活性,此可表現樟芝蛋白ACA1的食品級酵母菌在飼料業或食品業上具有高度應用潛力。
Antrodia cinnamomea is a well-known traditional Taiwanese herbal medicine which attracted a lot of attention these years due to its curative effects towards various diseases. Although sources of A. cinnamomea are highly limited in nature, overexpressing the bioactive components found in A. cinnamomea might be the answer to the markets’ demands. Immunomodulatory protein ACA1 has been previously isolated from the mycelia of A. cinnamomea by our laboratory. The bioactivities of ACA1 toward murine immune system have been verified and the gene encoding ACA1 has been cloned. To obtain the protein in large quantity, recombinant ACA1 was expressed in both prokaryotic and eukaryotic systems. Recombinant ACA1 expressed in GST fusion system yielded a soluble fusion protein GST-ACA1, which exhibited a molecular weight near 40 KDa. However, the pure rACA1 obtained after GST tag removal was technically too difficult to be collected. rACA1 expressed by pET-32a(+) expression vector obtained a satisfying quantity of both fusion HIS-ACA1 and pure rACA1, which were approximately 10 mg and 4 mg per liter culture respectively. Fusion HIS-ACA1 had a molecular weight of 20 KDa, and rACA1 had a molecular weight of 14 KDa. The isoelectric point of rACA1 was 5.0. In vitro studies revealed that rACA1 could effectively stimulate murine macrophage RAW264.7 to produce nitric oxide and TNF-α at low concentrations, and the responses increased in a dose-dependent manner. rACA1 could also stimulate the proliferation of murine splenocytes. The stability of rACA1 under various environmental stresses was demonstrated, and rACA1 was found to be stable under heat, acid, and dehydration treatments. Four monoclonal antibodies against rACA1 have also been established, and specific recognitions toward rACA1 were verified. In addition to being expressed in two bacterial systems above, recombinant ACA1 was also expressed in the eukaryotic, yeast Sacchromoyces cerevesiae expression system. Both wildtype aca1 gene and yeast-favored aca1 gene inserted in the constitutive expression vector pYEX-S1 had similar expression levels; the expression levels of C-terminal His-tagged ACA1s were found to be significantly higher than that of N-terminal His tagged ACA1s. In conclusion, recombinant ACA1 has been successfully expressed in both E.coli and yeast expression systems, and the purified rACA1 was proven to have immunomodulatory effects similar to that of natural ACA1. With good stability under various simulated conditions mimicking the industrial processing procedures, recombinant ACA1 expressed in the food-grade expression host S. cerevisiae could therefore possibly be utilized directly in animal feed or food in the near future.
Content
Figures and Tables V
Abstract 1
摘要 3
Chapter 1 Literature Review 4
1.1 INTRODUCTION OF ANTRODIA CINNAMOMEA, “NIU-CHANG-CHIH” 4
1.1.1 Classification, Nomenclature, and the Morphology of Antrodia cinnamomea 4
1.1.2 Chemical composition, compound identification, and cultivation studies of Antrodia cinnamomea 6
1.1.3 Bioactivities of Antrodia cinnamomea against various diseases 9
1.1.4 Immunomodulatory protein ACAs from Antrodia cinnamomea 17
1.2 PROTEIN EXPRESSION 20
1.2.1 Prokaryotic expression system 20
1.2.2 Eukaryotic expression system 32
1.3 RESEARCH OBJECTIVE 37
Chapter 2 Materials and Methods 39
2.1 CHEMICALS, REAGENTS, AND EQUIPMENTS 39
2.2 GENERAL PROTEIN ANALYSIS METHODS 45
2.2.1 Denaturing discontinuous polyacrylamide gel electrophoresis (SDS-PAGE) 45
2.2.2 Western Blotting 47
2.2.3 Protein concentration estimation 49
2.2.4 Polymerase chain reaction (PCR) 50
2.3 LARGE-SCALE EXPRESSION AND PURIFICATION OF RECOMBINANT ACA1 IN E. COLI 51
2.3.1 Large-scale expression of GST-ACA1 fusion protein 51
2.3.2 Large-scale expression of HIS-ACA1 fusion protein 55
2.4 MONOCLONAL ANTIBODY PREPARATION 60
2.5 BIOACTIVITIES OF RACA1 AND FUSION RACA1 UNDER DIFFERENT CONDITIONS 69
2.5.1 Sample preparation 69
2.5.2 Isoelectric Focusing (IEF) 70
2.5.3 LAL test 71
2.5.4 rACA1 stimulates macrophage RAW264.7 to produce NO and TNF-α 72
2.5.5 rACA1 simulates murine spleen cells proliferation measured by BrdU labeling assay 75
2.5.6 Cell viability and proliferation measured by MTT assay 77
2.5.7 Statistical analysis 78
2.6 EXPRESSION OF RECOMBINANT ACA1 IN YEAST 79
2.6.1 Modification of ACA1 codon according to yeast codon usage table 82
2.6.2 Plasmid constructs for yeast expression 83
2.6.3 Transformation of aca1-pYEX serial expression vectors in yeast 85
2.6.4 Yeast colony PCR 86
2.6.5 Storage of yeast strains 87
2.6.6 Expression of rACA1 in yeast 87
2.6.7 Detection of rACA1 in yeast 87
Chapter 3 Results 88
3.1 EXPRESSION OF RACA1 IN BACTERIAL SYSTEMS 88
3.1.1 Expression of rACA1 by GST fusion system 88
3.1.2 Expression of rACA1 by HIS fusion system 92
3.2 ESTABLISHMENT OF RACA1 MONOCLONAL ANTIBODIES 94
3.2.1 Immunization and cell fusion 94
3.2.2 Screening for positive hybridoma cell lines against recombinant ACA1 94
3.2.3 Ascites production in mice and purification of monoclonal antibodies C1, C2, C3, and C4 95
3.2.4 Recognition of mAb C1, C2, C3, and C4 against rACA1 and fusion HIS-ACA1 95
3.3 STUDIES ON THE BIOACTIVITIES AND STABILITY OF RACA1 UNDER VARIOUS CONDITIONS 96
3.3.1 Isoelectric point of rACA1 96
3.3.2 Endotoxin concentration estimation (LAL test) 96
3.3.3 Bioactivities and stability of rACA1 and fusion HIS-ACA1 toward murine macrophage RAW264.7 97
3.3.4 Bioactivities and stability of rACA1 and fusion HIS-ACA1 toward murine splenocytes 98
3.3.5 Influence of refolding methods on the activities of HIS-ACA1 fusion protein toward murine splenocytes 99
3.4 EXPRESSION OF RECOMBINANT ACA1 IN YEAST SYSTEM 101
3.4.1 rACA1 codon replacement according to yeast codon usage table 101
3.4.2 Construction of a secretion leader sequence-deleted expression vector pYEX 101
3.4.3 Construction of yfaca-pYEX expression vector 102
3.4.4 Construction of wtaca-pYEXplus expression vector by overlapping PCR technique 103
3.4.5 Growth rate and morphology of yeast strains DY150 and DBY747 103
3.4.6 Expression of yeast expression plasmids wtaca-pYEXplus and yfaca-pYEX 104
3.4.7 Construction of His-tagged ACA1 expression vectors 104
3.4.8 Expression and detection of His tag ACAs in yeast strains DY150 and DBY747 105
Chapter 4 Discussion 107
4.1 DISCUSSION 107
Chapter 5 Conclusion 114
5.1 CONCLUSION 114
References 115
References:
Amann, E., and J. Brosius (1985). "ATG vectors" for regulated high-level expression of cloned genes in Escherichia coli. Gene 40, 183-190.
Bai, Y. K. Q, and X. Geng (2003). Studies on renaturation with simultaneous purification of recombinant human proinsulin from E. coli with high perfomance hydrophobic interaction chromatography. J Liq Chromatogr R T 26, 683-695.
Baker, R. T. (1996). Protein expression using ubiquitin fusion and cleavage. Curr. Opin. Biotechnol. 7, 541-546.
Baneyx, F. (1999). Recombinant protein expression in Exherichia coli. Curr Opin Biotechnol 10, 411-421.
Batard, Y., A. Hehn, S. Nedelkina, M. Schalk, K. Pallett, H. Schaller, and D. Werck-Reichhart (2000). Increasing Expression of P450 and P450-Reductase Proteins from Monocots in Heterologous Systems. Arch. biochem. biophys 379, 161-169.
Bernard, H. U., and D. R. Helinski (1979). Use of the lambda phage promoter PL to promote gene expression in hybrid plasmid cloning vehicles. Methods enzymol. 68, 482-492.
Blond-Elguindi, S., S.E. Cwirla, W.J. dower, R.J. Lipshutz, S.R. Srpang, J.F. Sambrook, and M. J. Gething (1993). Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75, 717-728.
Brewer, S. J., and H. M. Sassenfeld (1985). The purification of recombinant proteins using C-terminal polyarginine fusions. Trends Biotechnol. 3, 119-125.
Brosius, J., and A. Holy (1984). Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc. Natl. Acad. Sci. 81, 6929-6933.
Buchner, J., U. Brinkmann, and I. Pastan (1992). Renaturation of a Single-Chain Immunotoxin Facilitated by Chaperones and Protein Disulfide Isomerase. Nat Biotech 10, 682-685.
Buell, G., M. F. Schulz, G. Selzer, A. Chollet, N. R. Movva, D. Semon, S. Escanez, and E. Kawashima (1985). Optimizing the expression in iE. coli of a synthetic gene encoding somatomedin-C (IGF-I). Nucleic Acids Res. 13, 1923-1938.
Casper, S. J., and C. A. Holt (1996). Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene 173, 69-73.
Cereghino, J. L., and J. M. Cregg (2000). Heterologous protein expression in the methylotrophic yeaast Pichia pastoris. FEMS Microbiol Rev. 24, 45-66.
Chaga, G., D.E. Bochkaiov, G.G. Jokhadze, J. Hopp, and P. Nelson (1999). Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt (II)-carboxymethylaspartate crosslinked agarose. J Chromatogr A 864, 256-257.
Chang, H. L., G. R. Chao, C. C. Chen, and J. L. Mau (2001a). Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem. 74, 203-207.
Chang, H. L., G. R. Chao, C. C. Chen, and J. L. Mau (2001b). Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem. 74, 203-207.
Chang, T. T., and W. N. Chou (1995a). Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycol. Res. 99, 956-958.
Chang, T. T., and W. N. Chou (1995b). Syn. nov.: Antrodia cinnamomea. Mycol. Res. 99, 756.
Chang, T. T., and W. N. Chou (2004). Antrodia cinnamomea reconsidered and A-salmonea sp nov on Cunninghamia konishii in Taiwan. Bot. Bull. Acad. Sin. 45, 347-352.
Chang, T. T., W. N. Chou, Y. C. Wang, and Y. M. Ju (2001c). "The magician of Nature -- Big fungi in Taiwan," Council of Agriculture, Executive Yuan, R.O.C.
Chang, Y. C. (2002). Molecular systematics of Antrodia camphorata. Master Thesis, National Taiwan University.
Chen, H., M. Bjerknes, R. Kumar, and e. Jay (1994). Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 22, 4953-4957.
Chen, Y. F. (2005). Studies on the molecular mechanism of macrophages activation by immunomodulatory protein ACA1 from Taiwanofungus camphoratus. Master Thesis, National Taiwan University, Taipei.
Cheng, J. J., C. J. Yang, C. H. Cheng, Y. T. Wang, N. K. Huang, and M. K. Lu (2005). Characterization and functional study of Antrodia camphorata lipopolysaccharide. J. Agric. Food Chem. 53, 469-474.
Chergn, I. H., D. P. Wu, and H. C. Chiang (1996). Triterpenoids from Antrodia cinnamomea. Phytochemistry 41, 263-267.
Cherng, I. H., and H. C. Chiang (1995). Three new triterpenoids from Antrodia cinnamomea. J. Nat. Prod. 58, 365-371.
Chin, K. L. (2004). Molecular cloning and gene expression of the immunomodulatory protein Aca1 from Antrodia camphorata. Mater Thesis, National Taiwan University, Taipei.
Cho, T. H., S. J. Ahn, and E. K. Lee (2001). Refolding of protein inclusion bodies directly from E. coli homogenate using expanded bed adsorption chromatography. Bioseparation 10, 189-196.
Chung, J. y., I. Fujii, S. Harada, U. Sankawa, and Y. Ebizuka (2002). Expression, Purification, and Characterization of AknX Anthrone Oxygenase, Which Is Involved in Aklavinone Biosynthesis in Streptomyces galilaeus. J Bacteriol 184, 6115–6122.
Cigan, A. M., and T. F. Donahue (1987). Sequence and structural features associated with translational initiator regions in yeast--A Review. Gene 59, 1-18.
Cleland, J. L., and D. I. C. Wang (1990). Cosolvent assisted protein refolding. Bio/Technology 8, 1274 - 1278
Davis, G. D., C. Elisee, D.M. Newham, and R. G. Harrison (1999). New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65, 382-388.
De Bernardez Clark, E. (1998). Refolding of recombinant proteins. Current Opinion in Biotechnology 9, 157-163
De Bernardez Clark, E., E. Schwarz, and R. Rudolph (1999). Inhibition of aggregation side reactions during in vitro protein folding. Methods Enzymol 309, 217-236.
de Boer, H. A., L.J. Comstock, and M. Vasser (1983). The tac promoter: A functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80, 21.
di Guan, C., P. Li, P.D. Riggs, and H. Inouye (1988). Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to malose-binding protein. Gene 67, 21-30.
Dobson, C. M. (2003). Protein folding and misfolding. Nature 426, 884-890.
Duerksen-Hughes, P. J., D. B. Day, S. M. Laster, N. A. Zachariades, L. Aquino, and L. R. Gooding (1992). Both tumor necrosis factor and nitric oxide participate in lysis of simian virus 40-transformed cells by activated macrophages. J. immunol. 149, 2114-2122.
Engvall, E., and P. Perlman (1971). Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of Immunoglobulin G. Immunochemistry 8, 871-874.
Evan, G. I., G.K. Lewis, G. Ramsay, and J. M. Bishop (1985). Isolation of monoclonal antibodies specific for human c-myc proto-onco-gene product. Mol Cell Biol 5, 3610-3616.
Ewalt, K. L., J. P. Hendrick, W. A. Houry, and F. U. Hartl (1997). In Vivo Observation of Polypeptide Flux through the Bacterial Chaperonin System. Cell 90, 491-500.
Fang, J., and D. Ewald (2004). Expression cloned cDNA for 10-deacetylbaccatin III-10-O-acetyltransferase in Escherichia coli: a comparative study of three fusion systems. Prot. Expr. Purif. 35, 17-24.
Fang, M., W. Wei, Y. Wang, and B. Ru (2004). Bacterial expression and purification of biologically active human TFF3. PEPTIDES 25, 785-792.
Feng, K., Q. H. Liu, T. B. Ng, H. Z. Liu, J. Q. Li, G. Chen, H. Y. Sheng, Z. L. Xie, and H. X. Wang (2006). Isolation and characterization of a novel lectin from the mushroom Armillaria luteo-virens. Biochemical and Biophysical Research Communications 345, 1573-1578.
Fischer, R., and N. Emanns (2000). Molecular farming of pharmaceutical proteins. Transgenic Res. 9, 279-299.
Gearing, D. P., N. A. Nicola, D. Metcalf, S. Foote, T.A Willson, N.M. gough, and R. L. Williams (1989). Production of leukemia factor in Escherichia coli by a novel procedure and its use in maintaining embryonic stem cells in culture. Bio/Technology 7, 1157-1161.
Gilbert, H. F. (1997). Protein Disulfide Isomerase and Assisted Protein Folding. J. Biol. Chem. 272, 29399-29402.
Gold, L., D. Pribnow, T. Schneider, D. Shinedling, B.S. Singer, and G. Stormo (1981). Translational initiation in procaryotes. Annu. Rev. Microbiol. 35.
Gorelik, L., Y. Bar-Dagan, and M. B. Mokyr (1996). Insight into the mechanism(s) through which TNF promotes the generation of T cell-mediated antitumor cytotoxicity by tumor bearer splenic cells. J. immunol. 156, 4298-4308.
Grisshammer, R., and C. G. Tate (1995). Overexpression of integral membrane proteins for structural studies. Q. Rev. Biophys 28, 315-422.
Gu, Z., M. Weidenhaupt, N. Ivanova, M. Pavlov, B. Xu, Z. G. Su, and J. C. Janson (2002). Chromatographic methods for the isolation of, and refolding of proteins from, Escherichia coli inclusion bodies. Prot. Expr. Purif. 25, 174-179.
Gusarov, I., and E. Nudler (2001). Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107, 437-499.
Gustafsson, C., S. Govindarajan, and J. Minshull (2004). Codon bias and heterologous protein expression. Trends biotechnol. 22, 346-353.
Hagel, P., J. J. T. Gerding, W. Fieggen, and H. Bloemendal (1971). Cyanate formation in solutions of urea : I. Calculation of cyanate concentrations at different temperature and pH. Biochim. biophys. acta, Prot. Struc. 243, 366-373.
Han, Y. G., He Li Liu, Hong Jin Zheng, Sheng Guang Li, and R. C. Bi (2004). Purification and refolding of human a5-subunit (PSMA5) of the 20S proteasome, expressed as inclusion bodies in Escherichia coli. Prot. Expr. Purif. 35, 360-365.
Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature 381, 571-580.
Holen, E., and S. Elsayed (1990). Characterization of four major allergens of hen egg-white by IEF/SDS-PAGE combined with electrophoretic transfer and IgE-immunoautoradiography. Int. Arch. Allergy Appl. Immunol 91, 136-41.
Holloway, D. E., M.C. Hares, Robert Shapiro, Vasanta Subramanian, and K. R. Acharya (2001). High-level expression of three members of the murine angiogenin family in Escherichia coli and purification of the recombinant proteins. Prot. Expr. Purif. 22, 307-317.
Hopp, T. P., K.S. Prickett, V. L. Price, R. T. Libby, C. J. March, D. P. Cerretti, D.L. Urdal, and P. J. Conlon (1988a). A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6, 1204-1210.
Hopp, T. P., K.S. Prickett, V.L. Price, R.T. Libby, C.J. March, D.P. Cerretti, and P. J. Conlon (1988b). A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6, 1204-1210.
Hseu, Y. C., W. C. Chang, Y. T. Hseu, C. Y. Lee, Y. J. Yech, P. C. Chen, J. Y. Chen, and H. L. Yang (2002). Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci. 71, 469-482.
Hseu, Y. C., F. Y. Wu, J. J. Wu, J. Y. Chen, W. H. Chang, F. J. Lu, Y. C. Lai, and H. L. Yang (2005). Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kB pathway. Int Immunopharmacol. 5, 1914-1925.
Hseu, Y. C., H. L. Yang, Y. C. Lai, J. G. Lin, G. W. Chen, and Y. H. Chang (2004). Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells. Nutr. cancer 48, 189-197.
Hsiao, G., M. Y. Shen, K. H. Lin, M. H. Lan, L. Y. Wu, D. S. Chou, C. H. Lin, C. H. Su, and J. R. Sheu (2003). Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J. Agri. Food Chem. 51, 3302-3308.
Hsu, Y. L., Y. C. Kuo, P. L. Kuo, L. T. Ng, Y. H. Kuo, and C. C. Lin (2005). Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer Lett 221, 77-89.
Hunt, I. (2005). From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Prot. Expr. Purif. 40, 1-22.
James, E. A., and J. M. Lee (2001). The production of foreign protein from genetically modified plant cells. Adv. Biochem. Eng. Biotechnol. 72, 127-156.
Kannan, R., C. Tomasetto, A. Staub, C. Bossenmeyer-Pourie, L. Thim, P. F. Nielsen, and M. C. Rio (2001). Human pS2/Trefoil Factor 1: Production and Characterization in Pichia pastoris. Prot. Expr. and Purif. 21, 92-98.
Kao, Y. T. (2004). Effects of the extracts and essential oil from Cinnamomum kanehirae on the growth of mycelium and fruiting body of Antrodia Cinnamomea. Master Thesis, National Taiwan University, Taipei.
Karmodiya, K., R. K. Srivastav, and N. Surolia (2005). Production and purification of refolded recombinant Plasmodium falciparum b-ketoacyl-ACP reductase from inclusion bodies. Prot Expr Purif 42, 131-136.
Karpseisky, M. Y., V.N. Senchenko, M.V. Dianova, and V. Kanevsky (1994). Formation and properties of S-protein complex with S-peptide-containing fusion protein. FEBS Lett 339, 209-212.
Knott, J. A., C.A. Sullivan, and A. Weston (1988). The isolation and characterisation of human atrial natriuretic factor poduced as a fusion protein in Escherichia coli. Eur. J. Biochem. 174, 405-410.
Kotula, L., and P. J. Curtis (1991). Evaluation of Foreign Gene Codon Optimization in Yeast: Expression of a Mouse IG Kappa Chain. Nat. biotechnol 9, 1386-1389.
Kurucz, I., J. A. Titus, C. R. Jost, and D. M. Segal (1995). Correct disulfide pairing and efficient refolding of detergent-solubilized single-chain Fv proteins from bacterial inclusion bodies. Mol. Immunol 32, 1443-1452.
LaVallie, E. R., E. A. DiBlasio, S. Kovacic, K. L. Grant, P. F. Schendel, and J. J. McCoy (1993). A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology, 187-193.
LaVallie, E. R., and J. M. McCoy (1995). Gene fusion expression systems in Escherichia coli. Curr. Opin. Biotechnol. 6, 501-506.
LaVallie, e. R., Z. Lu, E.A. Diblasimo-Smith, L.A. Collins-Racie, and J. M. McCoy (2000). Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol. 326, 322-340.
Lee, I. H., R. L. Huang, C. T. Chen, H. C. Chen, W. C. Hsu, and M. K. Lu (2002). Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Micro. Biol. Lett 209, 63-67.
Lehmann, K., S. Hoffmann, P. Neudecker, M. Suhr, W. M. Becker, and P. Rosch (2003). High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h 2. Prot. Expr. and Purif. 31, 250-259.
Levin, J., and F. B. Bang (1968). Clottable protein in Limulus; its localization and kinetics of its coagulation by endotoxin. Thromb. Diath. haemorrh. 19, 186.
Lichty, J. J., J. L. Malecki, H. D. Agnew, D. J. Michelson-Horowitz, and S. Tan (2005). Comparison of affinity tags for protein purification. Prot. Expr. and Purif. 41, 98-105.
Lin, W. H., C. H. Hung, C. I. Hsu, and J. Y. Lin (1997). Dimerization of the N-terminal Amphipathic alpha -Helix Domain of the Fungal Immunomodulatory Protein from Ganoderma tsugae (Fip-gts) Defined by a Yeast Two-hybrid System and Site-directed Mutagenesis. J. Biol. Chem. 272, 20044-20048.
Liu, J. J., T. S. Huang, M. L. Hsu, C. C. Chen, W. S. Lin, F. J. Lu, and W. H. Chang (2004). Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol. Appl. Pharmacol. 201, 186-193.
Maina, C. V., P.D. Riggs, A.G. Grandea III, B.E. Slatko, L.S. Moran, J.A. Tagliamonte, L.A. McReynolds, and C. d. Guan (1988). An Esherichia coli vector to express and purify foreign proteins by fusion to tand separation from maltose-binding protein. Gene 74, 365-373.
Marston, F. A., and D. L. Hartley (1990). Solubilization of protein aggregates. Methods Enzymol. 182, 264-276.
Masuo, N., K. Ito, K. Yoshimune, M. Hoshino, K. Matsushima, Y. Koyama, and M. Moriguchi (2004). Molecular cloning, overexpression, and purification of Micrococcus luteus K-3-type glutaminase from Aspergillus oryzae RIB40. Prot. Expr. and Purif. 38, 272-278.
Mieschendahl, M., T. Petri, and U. Haenggi (1986). A novel prophage independent TRP regulated lambda PL expression system. Bio/Technology 4, 802-808.
Nagai, K., and H. C. Thogersen (1984). Generation of b-globin by sequence-specific proteolysis of a hybrid protein produced in Esherichia coli. Nature 309, 810-812.
Nakamura, N., A. Hirakawa, J. J. Gao, H. Kakuda, M. Shiro, Y. Komatsu, C. C. Sheu, and M. Hattori (2004). Five new maleic and succinic acid derivatives from the mycelium of Antrodia camphorata and their cytotoxic effects on LLC tumor cell line. J. Nat. Prod. 67, 46-48.
Nath, D., and M. Rao (2001). Artificial chaperone mediated refolding of xylanase from an alkalophilic thermophilic Bacillus sp. . Implications for in vitro protein renaturation via a folding intermediate. Eur. J. Biochem 268, 5471-5478.
Nilsson, B., and L. Abrahmsen (1990). Fusion to staphylococcal protein A. Methods Enzymol. 185, 144-161.
Oka, T., S. Sakamoto, K. Miyoshi, T. Fuwa, K. Yoda, M. Yamasaki, G. Tamura, and T. Miyake (1985). Synthesis and secretion of human epidermal growth factor by Escherichia coli. Proc. Natl. Acad. Sci. 82, 7212-7216.
Ong, E., N. R. Gikes, R.A Waarren, R. C. M. Jr., and D. G. Kilburn (1989a). Enzyme immobilization using the cellulose0binding domain of a Cellulomonas fimi exoglucanase. Bio/Technology 7, 604-607.
Ong, E., J.M. Greenwood, N.R. Gikes, D.G. Kiburn, and R. C. M. Jr. (1989b). The cellulose-binding domains of cellulase: Tools for biotechnology. Trends Biotechnol. 7, 239-243.
Peng, C. C., K. C. Chen, R. Y. Peng, C. H. Su, and H. M. Hsieh Li (2006). Human urinary bladder cancer T24 cells are susceptible to the Antrodia camphorata extracts. Cancer Lett. In Press, Corrected Proof.
Persson, M., M.G. Bergstrand, L. Buelow, and K. Mosbach (1988). Enzyme purification by genetically attached polycysteine and polyphenylalanine affinity tails. Anal. Biochem. 172, 330-337.
Polayes, D. A., A. Goldstein, G. Ward, and A. J. H. Jr. (1994). TEV protease, recombinant: A site-specific protease for efficient cleavage of affinity tags from expressed proteins. Focus (Life Technologies) 16, 1-4.
Prouty, W. F., and A. L. Goldberg (1972). Fate of abnormal proteins in E. coli accuulation in intracellular granules before catabolism. Nat. New Biol. 240, 147-150.
Pryor, K. D., and B. Leiting (1997). High-level expression of soluble protein in Escherichia coli using His6-tag and maltose-binding-protein double-affinity system. Prot Expr Purif 10, 309-319.
Rao, R. N. (1984). Construction and the properties of plasmid pKC30, a pBR322 derivative containing the PL-N region of phage lambda. Gene 31, 247-250.
Rehm, B. H. A., Q. Qi, B. B. Beermann, H.J. Hinz, and A. Steinbüchel (2001). Matrix assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxylalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochem. J 358, 263-268.
Remaut, e., P. Stanssens, and W. Fiers (1981). Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene 15, 81-93.
Ridder, R., R. Schmitz, F. Legay, and H. Gram (1995). Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris. Bio/Technology 13, 225.
Romanos, M. A., C. A. Scorer, and J. J. Clare (1992). Foreign Gene Expression in Yeast: A Review. Yeast 8, 423-488.
Rosenberg, M., Y.S. Ho, and A. Shatzman (1983). The use of pKc30 and its derivatives for controlled expression of genes. Methods Enzymol. 101, 123-138.
Rudolph, R., and H. Lilie (1996). In vitro folding of inclusion body proteins. FASEB J. 10, 49-56.
Sachdev, D., and J. M. Chirgwin (1998). Solubility of proteins isolated from indlusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein Expr. Purif. 12, 122-132.
Sambrook, J., and D. W. Russell (2001). "Molecular cloning: a laboratory manual," 3/Ed. Cold Spring Harbor Laboratory Press, New York.
Sarramegn, V., I. Muller, A. Milon, and F. Talmont (2006). Recombinant G protein-coupled receptors from expression to renaturation: a challenge towards structure. CMLS, 1149-1164.
Sarramegna, V., F. Talmont, P. Demange, and A. Milon (2003). Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. CMLS 60, 1529-1546.
Schmidt, M., and D. R. Hoffman (2002). Expression systems for production of recombinant allergens. Int. Arch. Allergy. Immunol. 128, 264-270.
Schmidt, T. G. M., and A. Skerra (1993). The random peptide library-assistd engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng. 6, 109-122.
Schrödel, A., and A. d. Marco (2005). Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochemistry 6, 10.
Shatzman, A. R., and M. Rosenberg (1987). Expression, identification, and chatacterization of recombinant gene products in Escherichia coli. Methods Enzymol. 152, 661-673.
Shen, Y. C., C. J. chou, Y. H. Wang, C. F. Chen, Y. C. Chou, and M. K. Lu (2004). Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Micro. Biol. Lett 231, 137-143.
Shine, J., and L. Dalgarno (1975). Determinant of cistron specificity in bacterial ribosomes. Nature 254, 34.
Smith, D. B., and K. Johnson (1988a). Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31-40.
Smith, D. B., and K. S. Johnson (1988b). Single-step purification of polypeptides expressed in Escherichia colii as fusions with glutathione S-transferase Gene 67, 31-40.
Smith, M. C., T.C. Furman, T.D. Ingolia, and C. Pidgeon (1988). Chelating peptide-immobilizing metal ion chromatography. A new concept in affinity chromatography for recombinant proteins. J. Biol. Chem. 263, 7211-7215.
Song, T. Y., S. L. Hsu, C. T. Yeh, and G. C. Yen (2005a). Mycelia from Antrodia camphorata in submerged culture induce apoptosis of human hepatoma HepG2 cells possibly through regulation of Fas pathway. J. Agric. Food Chem 53, 5559-5564.
Song, T. Y., S. L. Hsu, and G. C. Yen (2005b). Induction of apoptosis in human hepatoma cells by mycelia of Antrodia camphorata in submerged culture. J.Ethnopharmacol. 100, 158-167.
Song, T. Y., and G. C. Yen (2002). Antioxidant properties of Antrodia camphorata in submerged culture. J. Agri. Food Chem. 50, 3322-3327.
Song, T. Y., and G. C. Yen (2003). Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. J. Agri.Food Chem. 51, 1571-1577.
Speed, M. A., D. I. C. Wang, and J. King (1996). Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat. Biotechnol. 14, 1283-1287.
Steitz, J. A. (1979). "Genetic signals and nucleotide sequences in messenger RNA," Plenum Publishing, New York.
Stempfer, G., B. Holl-Neugebauer, and R. Rudolph (1996). Improved refolding of an immobilized fusion protein. Nat Biotech 14, 329-334.
Stewart, E. J., F. Auslund, and J. Beckwith (1998). Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J. 17, 5543-5550.
Stofko-Hahn, R. E., D. W. Carr, and J. D. Scott (1992). A single step purification for recombinant proteins. FEBS Lett 302, 274-278.
Studier, F. W., A. H. Rosenberg, J. J. dunn, and J. W. Dubendorff (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60-89.
Studier, F. W., and B. A. Moffatt (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol 189, 113-130.
Tabor, S., and C. C. Richardson (1985). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82, 1074.
Takai, T., M. Takaoka, H. Yasueda, K. Okumura, and H. Ogawa (2005). Dilution method to refold bacterially expressed recombinant Der f 2 and Der p 2 to exhibit the secondary structure and histamine-releasing activity of natural Allergens. Int. Arch. Allergy Immunol. 137, 1-8.
Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol 60, 523-533.
Thim, L., H.F. Woelike, P.F. Nielsen, M. Christensen, K. Lynch-Devaney, and D. K. Podolsky (1995). Characterization of human and rat intestinal trefoil factor produced in yeast. Biochemistry 34, 4757-4764.
Tsai, Z. T., and S. L. Liaw (1985). The use and the effect of Ganoderma. Sheng-Tun Publisher: Taichung, Taiwan, 166-167.
Tsao, C. Y. (2003). Studies on the purification and bioactivity of immunomodulatory proteins from Antrodia camphorate, National Taiwan University, Taipei.
Tsumoto, K., M. Umetsu, I. Kumagai, D. Ejima, and T. Arakawa (2003). Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine. Biochem. Biophys. Res. Commun 312, 1383-1386.
Ullmann, A. (1984). One-step purification of hyybrid proteins which have b-galactosidase activity. Gene, 27-31.
Vallejo, L. F., and U. Rinas (2004). Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact dnlm 3, 11.
Van Heeke, G., R. Shaw, R. Schnizer, J.M. couton, S.M. Schuster, and F. W. Wagner (1993). Gene fusions with human carbonic anhydrase II for efficient expresion and rapid single-step recovery of recombinant proteins: Expression of the Escherichia coli F1-ATPase e subunit. Protein Expr. Purif. 4, 265-274.
Verma, R., E. Boleti, and A. J. T. George (1998). Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression systems J. Immunol. Methods 216, 165-181.
Vincentelli, R., Stephane Canaan, Valerie Campanacci, Christel Valencia, Damien Maurin, Frederic Frassinetti, Lorena Scappucini-Calvo, Yves Bourne, Christian Cambillau, and C. Bignon (2004). High-throughput automated refolding screening of inclusion bodies. Protein Sci. 13, 2782-2792.
Waldo, G. S. (2003). Improving protein folding efficiency by directed evolution using the GFP folding reporter. Methods Mol. Biol. 230, 343-359.
Walker, P. A., L. E. Leong, P. W. Ng, S. H. Tan, S. Waller, D. Murphy, and A. G. Porter (1994). Efficient and rapid affinity purification of proteins using recombinant fusion proteases. Bio/Technology (NY) 12, 601-605.
Wang, G. J., H. W. Tseng, C. J. Chou, T. H. Tsai, C. T. Chen, and M. K. Lu (2003). The vasorelaxation of Antrodia camphorata mycelia: Involvement of endothelial Ca2+-NO-cGMP pathway. Life Sci. 73, 2769-2783.
Wang, H. X., T.B Ng, W.K. Liu, V.E.C. Ooi, and S. T. Chang (1995). Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int. J. Peptide Protein Res. 46, 508-513.
Willis, M. S., J. K. Hogan, P. Prabhakar, X. Liu, K. Tsai, Y. Wei, and T. Fox (2005). Investigation of protein refolding using a fractional factorial screen: A study of reagent effects and interactions. Protein Sci 14, 1818-1826.
Wilson, D. S., A.D. Keefe, and J. W. Szostak (2001). The use of mRNA display to select high-affinity protein-binding peptides. PNAS 98, 3750-3755.
Woestenenk, E. A., M. Hammarstroem, S. van den Berg, T. Haerd, and H. Berglund (2004). His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors. JSFG 5, 217-229.
Wu, C. H., M. F. Lee, and N. M. Wang (2000). Expression of the American cockroach Per a 1 allergen in mammalian cells. Allergy 55, 1179-1183.
Wu, H., C. L. Pan, Y. C. Yao, S. S. Chang, S. L. Li, and T. F. Wu (2006). Proteomic analysis of the effect of Antrodia camphorata extract on human lung cancer A549 cell. PROTEOMICS 6, 826-835.
Wu, S. H., Z. H. Yu, Y. C. Dai, C. T. Chen, C. H. Su, L. C. Chen, W. C. Hsu, and G..Y. Hwang (2004). Taiwanofungus, a polypore new genus. Fung. Sci. 19, 109-116.
Wu, S. H., L. Ryvarden, and T. T. Chang (1997). Antrodia camphorata (''niu-chang-chih''), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sin. 38, 173-275.
Wu, S. Y. (2002). Effects of the extracts from Cinnamomum kanehirae on the mycelial growth of Antrodia camphorata. Master Thesis, National Taiwan University, Taipei.
Wu, X., Z. Su, X. Li, Q. Zheng, Y. Huang, and H. Yuan (2005). High-livel expression and purification of a nonmitogenic form of human acidic fibroblast growth factor in Escherichia coli. Protein Expr. Purif. 42, 7-11.
Wurm, f., and A. Bernard (1999). Large-scale transient expression in mammalian cells for recombinant protein production. Curr. Opin. Biotechnol. 10, 156-159.
Xue, X., Zenglu Wang, Zhen Yan, Jihong Shi, W. Han, and Y. Zhang (2005). Production and purification of recombinant human BLyS mutant from inclusion bodies. Prot. Expr. Purif. 42, 194-199.
Yang, F. C., H. C. Huang, and M. J. Yang (2003). The influence of environmental conditions on the mycelial growth of Anrodia cinnamomea in submerged cultures. Enzyme Microb. Technol 33, 395-402.
Yang, H. L., C. S. Chen, W. H. Chang, F. J. Lu, Y. C. Lai, C. C. Chen, T. H. Hseu, C. T. Kuo, and Y. C. Hseu (2006a). Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Lett. 231, 215-227.
Yang, H. L., Y. C. Hseu, J. Y. Cheng, Y. J. Yech, F. J. Lu, H. H. Wang, P. S. Lin, and B. C. Wang (2006b). Antrodia Camphorata in submerged culture protects low density lipoproteins against oxidative modification. Am J Chin Med 34, 217-231.
Yang, S. W., Y. C. Shen, and C. H. Chen (1996). Steroids and triterpenoids of Antrodia cinnamomea--a fungus parasitic on cinnamomum micranthum Phytochemistry 41, 1389-1392.
Yuan, L., S. P. Craig, J. H. Mckerrow, and C. C. Wang (1990). The hypoxanthine-guanine phosphoribosyltransferase of Schistosoma mansoni: Further characterization and gene expression in Escherichia coli. J. Biol. Chem. 256, 13528-13532.
Zang, M., and C. H. Su (1990). Ganoderma comphoratum, a new taxon in genus Ganoderma from Taiwan, China. . Acta Bot. Yunnanica 12, 395-396.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top