跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳英琮
研究生(外文):Ying-Tsung Chen
論文名稱:光動力作用抑制白色念珠菌懸浮細胞與生物膜
論文名稱(外文):Photodynamic Inactivation against Candida albicans Planctonic Cells and Biofilms
指導教授:黃慶璨
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:66
中文關鍵詞:生物膜光動力治療光感物質亞甲基藍粒線體
外文關鍵詞:biofilmphotodynamicphotosensitizersmethylene bluemitochondria
相關次數:
  • 被引用被引用:2
  • 點閱點閱:449
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微生物於自然界主要以生物膜 (biofilms) 方式存在,但生物膜之抗藥性機制使得一般抗生素療法成果不佳,因此開發新型生物膜防治法為當務之急。光動力療法 (photodynamic therapy, PDT) 為利用特定波長光源將光感物質 (photosensitizer) 激發至高能激發態,藉電子或能量轉移而產生自由基或單態氧 (1O2) 以傷害菌體,目前已應用於癌症或微生物防制。早期光動力抑菌實驗多著重於懸浮菌體,近年來才逐漸應用於生物膜之防治。本實驗以連續培養系統模擬白色念珠菌生物膜生長過程,再比較懸浮細胞與生物膜之亞甲基藍光動力抑菌劑量。以波長 630 ± 10 nm 之發光二極體照光 360 J/cm2,106 懸浮生菌需 2 nmol 亞甲基藍。而照光 480 J/cm2 時,108 懸浮生菌需 210 nmol;含 108 生菌數之生物膜所需劑量為1447 nmol。結果顯示生物膜所需劑量僅比懸浮細胞高出 7.23 倍。而 106 懸浮生菌於 5 μM 亞甲基藍中,分別照光 120 與 480 J/cm2,其菌落以三苯基四氮唑化氯 (TTC) 試驗,各可觀察到 6.6±4.1% 及 20.8±8.9% 粒線體受損之菌落。經光動力傷害之白色念珠菌粒線體以 JC-1 螢光染色後觀察,可發現其粒線體膜電位明顯下降,而死亡菌體則無法觀察到螢光反應。以螢光光度計檢測菌體內之 mitotracker green FM 及 JC-1 螢光強度發現,受光動力傷害之菌體,其螢光強度大幅下降,而死亡菌體則無明顯螢光反應。此研究顯示,亞甲基藍光動力抑制生物膜效果不受生物膜抗性機制之影響,可能是因為光動力作用直接傷害菌體之胞器,而不同於一般抗生素之抑制菌體生理活性。因此光動力作用在未來微生物防治上具有相當的潛力。
Photodynamic inactivation (PDI) of Candida albicans planktonic and biofilm cells by a phtotosensitizer, methylene blue (MB), has been investigated. For the planktonic and biofilm cells, MB inhibition efficiency of yeast was found to increase with both increasing MB concentration and light dose. But increasing the light dose could not further improve the antimicrobial activity, if the maximum excitation level was less attainable than the necessary minimum threshold. Complete inactivation can be achieved when the excitation level of MB is somewhere above the threshold. No viable cells were detected when 106 planktonic cells were exposed to 2 nmol MB and a light dose of 360 J/cm2, or 108 planktonic cells were exposed to 210 nmol MB and a light dose of 360 J/cm2 or 108 biofilms were exposed to 1447 nmol MB and a light dose of 360 J/cm2. Then, triphenyltetrazolium chloride (TTC)-agar was overlaid on the colonies formed from PDT treated cells, and several colonies with injury mitochondria were found. Dyeing the PDT-treated injury yeasts by JC-1 and observing them by fluorescence microscope, the potential of the mitochondria outer membrane decreased obviously. The MTG (mitotracker green FM) and JC-1 fluorescence intensity was detected by the fluorophotometer, the fluorescence intensity of the damaged cells decreased obviously, and no signal of the dead cells. This study shows that bilfilm resistance does not decrease MB-PDT of microbes. It is possible that PDT directly destroys organelles, instead of the physiological activity inhibition. Therefore, PDT is a potential way to prevent the microbes infection of in the future.
中文摘要....................................................................................III
英文摘要....................................................................................IV
壹、前言.....................................................................................1
1. 生物膜....................................................................................1
1.1 環境中之生物膜......................................................................1
1.2 生物膜之形成.........................................................................2
1.3 生物膜之結構.........................................................................5
1.4 生物膜之抗藥性機制................................................................7
1.5 白色念珠菌生物膜之研究..........................................................9
1.5.1 白色念珠菌之危害................................................................9
1.5.2 白色念珠菌生物膜之危害.....................................................12
1.5.3 白色念珠菌生物膜形成之環境因素.........................................13
1.5.4 白色念珠菌生物膜之生成過程...............................................15
1.6 生物膜之防治........................................................................17
2. 光動力作用.............................................................................18
2.1 光動力作用之歷史及應用........................................................18
2.2 光動力作用之機制.................................................................19
2.3 光動力作用之要素.................................................................21
2.3.1 光源.............................................................................21
2.3.2 光感物質............................................................................22
2.3.3 氧氣..................................................................................23
3. 亞甲基藍光動力研究之回顧.......................................................25
4. 氧化作用對粒線體之傷害..........................................................26
5. 研究動機及目的.......................................................................26
貳、材料與方法...........................................................................28
1. 菌種.......................................................................................28
2. 儀器.......................................................................................28
2.1 光動力作用裝置.....................................................................28
2.2 生物膜培養系統.....................................................................29
3. 實驗材料與方法.......................................................................30
3.1 磷酸緩衝液之配置..................................................................30
3.2 白色念珠菌懸浮菌體之培養與定量............................................30
3.3 白色念珠菌生物膜之培養與定量...............................................30
4. 光動力對白色念珠菌之抑制實驗.................................................31
4.1 光感物質之篩選.....................................................................31
4.2 PpIX 生合成之測定................................................................31
4.3 亞甲基藍對 106 CFU 懸浮菌體之光動力抑制.............................31
4.4 亞甲基藍對 108 CFU 懸浮菌體之光動力抑制.............................32
4.5 亞甲基藍對生物膜之光動力抑制...............................................32
5. 亞甲基藍激發量之測定..............................................................32
5.1 106 CFU 懸浮菌體.................................................................32
5.2 108 CFU 懸浮菌體.................................................................33
5.3 108 CFU 生物膜....................................................................33
6. 光動力作用對白色念珠菌粒線體損傷之測定..................................33
6.1 以 TTC 評估對於粒線體損傷....................................................33
6.2 JC-1 對於粒線體膜電位之測定.................................................34
6.2.1 以螢光顯微鏡觀察粒線體電位變化.........................................34
6.2.2 以螢光光度計偵測粒線體電位...............................................35
6.3 以 Mitotracker* Green FM (MTG) 測粒線體膜結構...................35
參、結果....................................................................................36
1. 光感物質之篩選......................................................................36
1.1 部花青素 (merocyanine 540, MC 540)...................................36
1.2 靛氰綠 (indocyanine green, ICG)...........................................37
1.3 胺基酮戊酸 (delta-aminolevulinic acid, δ-ALA).....................38
1.3.1 δ-ALA 之光動力抑制效果....................................................38
1.3.2 PpIX 生合成之測定..............................................................39
1.4 亞甲基藍 (methylene blue, MB)..............................................41
2. 白色念珠菌生物膜生成曲線........................................................42
3. 亞甲基藍之光動力抑制..............................................................44
3.1 對懸浮細胞 (106 CFU) 之抑制作用...........................................44
3.2 對懸浮細胞 (108 CFU) 之抑制作用...........................................46
3.3 對生物膜 (108 CFU) 之抑制作用..............................................48
4. TTC 對於光動力造成粒線體損傷之評估.......................................50
5. JC-1 對於粒線體電位改變之觀察................................................51
5.1 以螢光顯微鏡觀察粒線體電位...................................................51
5.2 以螢光光度計偵測粒線體電位...................................................53
5.2 以螢光光度計偵測粒線體功能及構造.........................................54
肆. 討論......................................................................................55
1. Pp IX 生合成的測定..................................................................55
2. 亞甲基藍之光動力抑制效果........................................................55
3. 亞甲基藍激發量與抑菌能力之關係...............................................56
4. 光動力作用對於粒線體之傷害.....................................................58
伍、結論及未來之展望...................................................................60
陸、參考文獻................................................................................61
Allen JA, Coombs MM. 1980. Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA. Nature 287(5779):244-245.
Allison DG, Gilbert P. 1995. Modification by surface association of antimicrobial susceptibility of bacterial populations. J Ind Microbiol 15(4):311-317.
Anderl JN, Zahller J, Roe F, Stewart PS. 2003. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47(4):1251-1256.
Ashkenazi H, Malik Z, Harth Y, Nitzan Y. 2003. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 35(1):17-24.
Bachmann B, Knuver-Hopf J, Lambrecht B, Mohr H. 1995. Target structures for HIV-1 inactivation by methylene blue and light. J Med Virol 47(2):172-178.
Baillie GS, Douglas LJ. 1999. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48(7):671-679.
Beck-Sague C, Jarvis WR. 1993. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. J Infect Dis 167(5):1247-1251.
Bonnett R. 2000. Chemical aspects of photodynamic therapy.
Brown MR, Gilbert P. 1993. Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol 74 Suppl:87S-97S.
Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 2001a. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183(18):5385- 5394.
Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA. 2001b. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 80(3):903-908.
Chen Q, Huang Z, Chen H, Shapiro H, Beckers J, Hetzel FW. 2002. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol 76(2):197-203.
Chen YC, Chang SC, Luh KT, Hsieh WC. 2003. Stable susceptibility of Candida blood isolates to fluconazole despite increasing use during the past 10 years.
J Antimicrob Chemother 52(1):71-77.
Chen YC, Chang SC, Tai HM, Hsueh PR, Luh KT. 2001. Molecular epidemiology of Candida colonizing critically ill patients in intensive care units. J Formos Med Assoc 100(12):791-797.
Cochran WL, McFeters GA, Stewart PS. 2000. Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J Appl Microbiol 88(1):22-30.
Cohen Y. 2002. Bioremediation of oil by marine microbial mats. Int Microbiol 5(4):189-193.
Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. 1993. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5'',6,6''-
tetrachloro-1,1'',3,3''-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochemical and Biophysical Research Communications 197:40-45.
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711-745.
Coudron PE, Stratton CW. 1995. Utilization of time-kill kinetic methodologies for assessing the bactericidal activities of ampicillin and bismuth, alone and in
combination, against Helicobacter pylori in stationary and logarithmic growth phases. Antimicrob Agents Chemother 39(1):66-69.
Creagh TA, Gleeson M, Travis D, Grainger R, McDermott TE, Butler MR. 1995. Is there a role for in vivo methylene blue staining in the prediction of bladder tumour recurrence? Br J Urol 75(4):477-479.
Davies KJ. 1996. Oxidative stress: the paradox of aerobic life. Biochemical Society Symposia 61:1-31.
DiTizio V, Ferguson GW, Mittelman MW, Khoury AE, Bruce AW, DiCosmo F. 1998. A liposomal hydrogel for the prevention of bacterial adhesion to catheters. Biomaterials 19(20):1877-1884.
Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881-890.
Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29(2):239-244.
Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR. 1999. Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen
peroxide. Appl Environ Microbiol 65(10):4594-4600.
Finsen NR. The chemical rays of light ans smallpox. In: Arnol E, editor; 1901; London. p 1-36.
Fitzpatrick TB, Pathak MA. 1959. Historical aspects of methoxsalen and other furocoumarins. J Invest Dermatol 32(2, Part 2):229-231.
Flemming HC, Wingender J, Griegbe, Mayer C. Physico-chemical properties of biofilms. In: Evans LV, editor; 2000; Amsterdam. Harwood Academic Publishers.
Fuchs J, Thiele J. 1998. The role of oxygen in cutaneous photodynamic therapy. Free Radic Biol Med 24(5):835-847.
Ganderton L, Chawla J, Winters C, Wimpenny J, Stickler D. 1992. Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters.Eur J Clin Microbiol Infect Dis 11(9):789-796.
Gordon CA, Hodges NA, Marriott C. 1988. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived
Pseudomonas aeruginosa. J Antimicrob Chemother 22(5):667-674.
Gow NA. 1997. Germ tube growth of Candida albicans. Curr Top Med Mycol 8(1- 2):43-55.
Gow NA, Brown AJ, Odds FC. 2002. Fungal morphogenesis and host invasion. Curr Opin Microbiol 5(4):366-371.
Green DR, Reed JC. 1998. Mitochondria and apoptosis. Science 281(5381):1309- 1312.
Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH. 1999. Quorum sensing in Pseudomonas aeruginosa controls expression of
catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34(5):1082-1093.
Hawser SP, Douglas LJ. 1994. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62(3):915-921.
Lazazzera BA. 2000. Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3(2):177-182.
Li XZ, Li FB, Yang CL, Ge WK. 2001. Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of photochemistry and Photobiology A:Chemistry 141(3):209-217.
Li Y, Zhu H, Stansbury KH, Trush MA. 1997. Role of reactive oxygen species in multistage carcinogenesis. Oxygen 12:237-277.
Lin HY, Chen CT, Huang CT. 2004. Use of merocyanine 540 for photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells. Appl Environ Microbiol 70(11):6453-6458.
Liu H. 2001. Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4(6):728-735.
Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU. 1999.
Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4):757-767.
Marsh PD, Bradshaw DJ. 1995. Dental plaque as a biofilm. J Ind Microbiol 15(3):169-175.
Menezes S, Capella MA, Caldas LR. 1990. Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J Photochem Photobiol B 5(3-4):505-517.
Merson-Davies LA, Odds FC. 1989. A morphology index for characterization of cell shape in Candida albicans. J Gen Microbiol 135(11):3143-3152.
Miller LG, Hajjeh RA, Edwards JE, Jr. 2001. Estimating the cost of nosocomial candidemia in the united states. Clin Infect Dis 32(7):1110.
Monfrecola G, Procaccini EM, Bevilacqua M, Manco A, Calabro G, Santoianni P. 2004. In vitro effect of 5-aminolaevulinic acid plus visible light on Candida albicans. Photochem Photobiol Sci 3(5):419-422
Moor AC. 2000. Signaling pathways in cell death and survival after photodynamic therapy. J Photochem Photobiol B 57(1):1-13.
Nucci M, Anaissie E. 2001. Revisiting the source of candidemia: skin or gut? Clin Infect Dis 33(12):1959-1967.
O''Toole G, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol 54:49-79.
Odds FC. 1988. Candida and Candidosis. London: Balliere Tindall. Ogur M, St. John R, Nagai S. 1957. Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125(3254):928-929.
Okkerse WJ, Ottengraf SP, Osinga-Kuipers B, Okkerse M. 1999. Biomass accumulation and clogging in biotrickling filters for waste gas treatment. Evaluation of a dynamic model using dichloromethane as a model pollutant. Biotechnol Bioeng 63(4):418-430.
Parsek MR, Fuqua C. 2004. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186(14):4427-4440.
Pitts B, Willse A, McFeters GA, Hamilton MA, Zelver N, Stewart PS. 2001. A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms. J Appl Microbiol 91(1):110-117.
Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181(19):5993-6002.
Raab O. 1900. Ueber die wirkung fluorescierender stoffe auf infusorien. Zetischrift fur biologie 39:524-546.
Ramage G, Wickes BL, Lopez-Ribot JL. 2001. Biofilms of Candida albicans and their associated resistance to antifungal agents. Am Clin Lab 20(7):42-44.
Rasmussen L, Singh KK. 1998. Genetic integrity of mitochondrial genome. Singh KK, editor. New York: Springer Verlag. Santus R, Grellier P, Schrevel J, Maziere JC, Stoltz JF. 1998. Photodecontamination of blood components: advantages and drawbacks. Clin Hemorheol Microcirc 18(4):299-308.
Schultz EM, Kruegar AP. 1928. Inactivation of Staphylococcus bacteriophage by methylene blue. Proceedings of the Society of Experimental Biology and Medicine 26:100-101.
Sharman WM, Allen CM, van Lier JE. 1999. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 4(11):507-517.
Shih PC, Huang CT. 2002. Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 49(2):309-314.
Soll DR. 2002. Candida and Candidiasis. Calderone R, editor. Washington: ASM. Soukos NS, Mulholland SE, Socransky SS, Doukas AG. 2003. Photodestruction of
human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model. Lasers Surg Med 33(3):161-168.
Souli M, Giamarellou H. 1998. Effects of slime produced by clinical isolates of coagulase-negative staphylococci on activities of various antimicrobial agents. Antimicrob Agents Chemother 42(4):939-941.
Specht KG. 1994. The role of DNA damage in PM2 viral inactivation by methylene blue photosensitization. Photochem Photobiol 59(5):506-514.
Spratt DA, Latif J, Montebugnoli LL, Wilson M. 2004. In vitro modeling of dental water line contamination and decontamination. FEMS Microbiol Lett 235(2):363-367.
Sung JM, Ko WC, Huang JJ. 2001. Candidaemia in patients with dialysis- dependent acute renal failure: aetiology, predisposing and prognostic factors. Nephrol Dial Transplant 16(12):2348-2356.
Tack KJ, Sabath LD. 1985. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31(3):204-210.
Theraud M, Bedouin Y, Guiguen C, Gangneux JP. 2004. Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and
biofilm conditions. J Med Microbiol 53(Pt 10):1013-1018.
Tomaselli F, Maier A, Pinter H, Stranzl H, Smolle-Juttner FM. 2001. Photodynamic therapy enhanced by hyperbaric oxygen in acute endoluminal palliation of
malignant bronchial stenosis (clinical pilot study in 40 patients). Eur J Cardiothorac Surg 19(5):549-554.
Tuite EM, Kelly JM. 1993. Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B 21(2-3):103-124.
Usacheva MN, Teichert MC, Biel MA. 2001. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram- negative microorganisms. Lasers Surg Med 29(2):165-173.
Von-Tappeiner H, Josionek A. 1903. Theraputic versuche mit fluoreszierenden stoffen. Munchener medizinische wochenschrift 47:2042-2044.
Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H. 2002. Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81(1-4):665-680.
Wainwright M. 1998. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42(1):13-28.
Walters MC, 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin
and tobramycin. Antimicrob Agents Chemother 47(1):317-323.
Watnick P, Kolter R. 2000. Biofilm, city of microbes. J Bacteriol 182(10):2675-2679. Whiteway M. 2000. Transcriptional control of cell type and morphogenesis in
Candida albicans. Curr Opin Microbiol 3(6):582-588.
Wieman TJ, Mang TS, Fingar VH, Hill TG, Reed MW, Corey TS, Nguyen VQ, Render ER, Jr. 1988. Effect of photodynamic therapy on blood flow in normal and tumor vessels. Surgery 104(3):512-517.
Willson M, Mia N. 1994. Effect of environmental factors on the lethal photosensitizer of Candida albicans in vitro. Lasers in Medical Science 9:105-109.
Wingender J, Flemming HC. 2004. Contamination potential of drinking water distribution network biofilms. Water Sci Technol 49(11-12):277-286.
Wiseman A, Attardi G. 1978. Reversible tenfod reduction in mitochondria DNA content of human cells treated with ethidium bromide. Mol Gen Genet 167(1):51-63.
Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035-4039.
Zeina B, Greenman J, Purcell WM, Das B. 2001. Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol 144(2):274-278.
Zhang TC, Bishop PL. 1996. Evaluation of substrate and pH effects in a nitrifying biofilm. Wat Environ Res 68:1107-1115.
王耀星. 2001. 高效率藍光二極體之研究. 台北: 國立台灣大學.
吳綺容, 李欣純, 柯文謙. 2003. 念珠菌菌血症臨床處置的新進展. 內科學誌14(5):14-24.
涂雅屏. 2005. 以螺旋藻萃取之C-藻藍素對細菌懸浮細胞與生物膜之光動力抑制作用. 台北: 台灣大學.
陳惠文. 2000. 粒線體膜電位之測定. (台大醫院 生物醫學報導) NTU BioMed Bulletin 2:46-47
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top