跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴美汝
研究生(外文):Mei-Ju Lai
論文名稱:探討與EBVLMP2A交互作用之蛋白RACK1在LMP2A調控的訊息中所扮演的角色
論文名稱(外文):Investigation of RACK1 as an EBV LMP2A interacting protein and its role in LMP2A-mediated signaling
指導教授:蔡錦華蔡錦華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:60
中文關鍵詞:EB病毒潛伏期膜蛋白質2A
外文關鍵詞:EBVLMP2ARACK1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文所要探討的LMP2A(latent membrane protein)蛋白質,是與人類惡性腫瘤相關之EB病毒潛伏期中所表現的其中一種基因產物。LMP2A蛋白質的結構中,胺基端包含許多具功能性的特異區域(motif),對於LMP2A與其它細胞內蛋白質交互作用是相當重要的。根據報導指出,LMP2A藉由與Src 族的酪胺酸激酶,如Lyn、Syk交互作用,進而阻斷B細胞受器所傳遞的訊息,而在基因轉殖小鼠中,LMP2A可提供B細胞存活的訊息。雖然LMP2A的胺基端對於傳遞下游訊息扮演重要角色,但對於可與LMP2A胺基端交互作用之細胞蛋白及其相關之分子機制的研究仍然相當有限,因此我們嘗試找尋可與LMP2A結合的其他細胞蛋白質,並研究這些結合蛋白在LMP2A傳遞的訊息路徑中扮演之角色。
利用酵母菌雙雜交法 (Yeast two hybrid) 初步篩選可能與LMP2A有交互作用的蛋白質。在篩選的結果中,其中兩個可能與LMP2A結合的蛋白質,分別是RACK1(Receptor for activated C kinase 1)及UbA80 (Ubiquitin A 80)。而利用GST沉澱法 (Glutathione-S-Transferase pull down assay) 及共同免疫沉澱法(co-immunopricipitation assay)可分別在體外( in vitro)或體內(in vivo)實驗中進一步證實LMP2A與RACK1有交互作用。除此之外,亦利用免疫螢光染色法(immunofluorescent assay)觀察到LMP2A和RACK1在細胞內之表現區域有重疊的現象。因此體外及體內的實驗結果皆證實LMP2A與RACK1有交互作用。
由實驗室以前結果得知,LMP2A的表現會增加JNK(c-Jun N-terminal kinase)和ERK(extracellular signal-regulated kinase)蛋白質的磷酸化。因為內生性RACK1在細胞內表現量已有相當量,為了探討RACK1對於LMP2A活化JNK及ERK的重要性,因此在穩定表現LMP2A的細胞中,利用針對RACK1的微型干擾RNA (siRNA) 降低細胞內RACK1基因的表現。相較於對照控制組,若降低RACK1基因表現,則會減弱LMP2A增加JNK及ERK磷酸化之能力。因此RACK1不只與LMP2A交互作用,對於LMP2A活化JNK及ERK的訊息路徑中也扮演重要的角色。
本論文的研究,乃首篇報導LMP2A可與RACK1結合,並可能藉此交互作用來增強JNK及ERK的磷酸化。往後的研究可承接此點再深入研究,以求了解更多有關LMP2A和RACK1之間的交互作用對細胞的生物意義。有關RACK1在LMP2A所造成的生物現象中扮演何種角色尚待後續的研究做更進一步完整的探討。
Latent membrane protein 2A (LMP2A) is one of the latent proteins of Epstein-Barr Virus (EBV), which is an oncogenic virus associated many human malignancies. The N-terminal of LMP2A possesses several functional motifs which are critical for its interactions with various cellular proteins. Through interactions with cellular proteins such as Lyn and Syc, LMP2A can block downstream signaling pathways triggering by B cell receptors. In the LMP2A transgenic mice model, LMP2A can provide pro-survival signal for B cell growth in peripheral center. Duce the scaffold protein structure of LMP2A, we believe that LMP2A has potential to interact with many kinds of celluar proteins. Based on this assumption, we would like to investigate these novel LMP2A-interacting proteins and reveal their roles in LMP2A-triggered signaling pathways.
In order to pursue this goal, yeast-two-hybrid assay was performed to screen possible cellular proteins interacting with LMP2A. Among 11 prelimary LMP2A-interacting proteins, the receptor for activated C kinase 1(RACK1) futher was chosen for the investigation. GST-pull-down assay and co-immunoprecipitation assay were utilized to confirm the interaction between LMP2A and RACK1 in vitro and in vivo, respectively. In addition, co-localization of LMP2A and RACK was also observed in the immunofluorescent assay. These results all proved LMP2A can interact with RACK1 both in vitro and in vivo.
According to our previous studies, LMP2A could enhance the phosphorylation of cellular c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). In order to elucidate if RACK1 is involved in LMP2A-mediated JNK and ERK phosphorylation, RACK1-targeted siRNA was approached. The state of LMP2A-induced JNK and ERK phosphorylation was significantily reduced while the cellular RACK1 was dimished due to the transfection of siRACK1 into the LMP2A-expressing stable line.This result indicated that RACK1 was acting not only as an interacting protein but also as a signaling mediator required for LMP2A-induced JNK and ERK phosphorylation.
This is the first demostrate that cellular protein RACK1 can interact with LMP2A and RACK1 is involved in the signaling pathway of LMP2A-triggering JNK and ERK phosphorylation. However the molecular mechanism of involvement of RACK1 in LMP2A-triggering signaling needs more investigation.
中文摘要……………………………………………………………………Ⅰ

英文摘要……………………………………………………………………Ⅲ

序論………………………………………………………………………….1

研究目的…………………………………………………………………… 8

實驗材料…………………………………………………………………… 9

實驗方法……………………………………………………………………17

結果…………………………………………………………………………26

討論…………………………………………………………………………31

圖表…………………………………………………………………………35

參考文獻……………………………………………………………………54

附錄…………………………………………………………………………60
Baumann M, Gires O, Kolch W, Mischak H, Zeidler R, Pich D and Hammerschmidt W (2000) The PKC targeting protein RACK1 interacts with the Epstein-Barr virus activator protein BZLF1. Eur J Biochem 267:3891-901.
Besson A, Wilson TL and Yong VW (2002) The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem 277:22073-84.
Brooks L, Yao QY, Rickinson AB and Young LS (1992) Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol 66:2689-97.
Buensuceso CS, Woodside D, Huff JL, Plopper GE and O''Toole TE (2001) The WD protein Rack1 mediates protein kinase C and integrin-dependent cell migration. J Cell Sci 114:1691-8.
Busson P, McCoy R, Sadler R, Gilligan K, Tursz T and Raab-Traub N (1992) Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol 66:3257-62.
Caldwell RG, Wilson JB, Anderson SJ and Longnecker R (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405-11.
Campbell KS (1999) Signal transduction from the B cell antigen-receptor. Curr Opin Immunol 11:256-64.
Chang BY, Chiang M and Cartwright CA (2001) The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. J Biol Chem 276:20346-56.
Chang BY, Conroy KB, Machleder EM and Cartwright CA (1998) RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol 18:3245-56.
Chen SY, Lu J, Shih YC and Tsai CH (2002) Epstein-Barr virus latent membrane protein 2A regulates c-Jun protein through extracellular signal-regulated kinase. J Virol 76:9556-61.
Cho SY and Klemke RL (2000) Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J Cell Biol 149:223-36.
Chou YC, Chou CC, Chen YK, Tsai S, Hsieh FM, Liu HJ and Hseu TH (1999) Structure and genomic organization of porcine RACK1 gene. Biochim Biophys Acta 1489:315-22.
Countryman J, Jenson H, Seibl R, Wolf H and Miller G (1987) Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol 61:3672-9.
DeFranco AL (1997) The complexity of signaling pathways activated by the BCR. Curr Opin Immunol 9:296-308.
Fields S and Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245-6.
Fruehling S and Longnecker R (1997) The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 235:241-51.
Fruehling S, Swart R, Dolwick KM, Kremmer E and Longnecker R (1998) Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein-Barr virus latency. J Virol 72:7796-806.
Gallina A, Rossi F and Milanesi G (2001) Rack1 binds HIV-1 Nef and can act as a Nef-protein kinase C adaptor. Virology 283:7-18.
Graham FL, Smiley J, Russell WC and Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59-74.
Hall AH and Alexander KA (2003) RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77:6066-9.
Hardwick JM, Lieberman PM and Hayward SD (1988) A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62:2274-84.
Henle W, Diehl V, Kohn G, Zur Hausen H and Henle G (1967) Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157:1064-5.
Henle W, Henle G, Ho HC, Burtin P, Cachin Y, Clifford P, de Schryver A, de-The G, Diehl V and Klein G (1970) Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst 44:225-31.
Hermanto U, Zong CS, Li W and Wang LH (2002) RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 22:2345-65.
Ikeda A, Caldwell RG, Longnecker R and Ikeda M (2003) Itchy, a Nedd4 ubiquitin ligase, downregulates latent membrane protein 2A activity in B-cell signaling. J Virol 77:5529-34.
Ikeda M, Ikeda A and Longnecker R (2001) PY motifs of Epstein-Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins. J Virol 75:5711-8.
James P, Halladay J and Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425-36.
Janeway CA, Travers, P.,M., W.,and D., C.J. (1999) Immunobiology.
Jentsch S, Seufert W and Hauser HP (1991) Genetic analysis of the ubiquitin system. Biochim Biophys Acta 1089:127-39.
Kieff EaR, A.B. (2001) Epstein-Barr Virus and Its Replication. Lippincott Williams & Wilkins.
Kiely PA, Sant A and O''Connor R (2002) RACK1 is an insulin-like growth factor 1 (IGF-1) receptor-interacting protein that can regulate IGF-1-mediated Akt activation and protection from cell death. J Biol Chem 277:22581-9.
Kirschner LS and Stratakis CA (2000) Structure of the human ubiquitin fusion gene Uba80 (RPS27a) and one of its pseudogenes. Biochem Biophys Res Commun 270:1106-10.
Laux G, Economou A and Farrell PJ (1989) The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. J Gen Virol 70 ( Pt 11):3079-84.
Lian J, Marcinkiewicz C, Niewiarowski S and Beacham DA (2001) Extracellular signal-regulated kinase (ERK) activation is required for GP Ibalpha-dependent endothelial cell migration. Thromb Haemost 86:1555-62.
Liliental J and Chang DD (1998) Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J Biol Chem 273:2379-83.
Liu MY, Chou WH, Nutter L, Hsu MM, Chen JY and Yang CS (1989) Antibody against Epstein-Barr virus DNA polymerase activity in sera of patients with nasopharyngeal carcinoma. J Med Virol 28:101-5.
Longnecker R, Druker B, Roberts TM and Kieff E (1991) An Epstein-Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol 65:3681-92.
Longnecker R and Kieff E (1990) A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol 64:2319-26.
Longnecker R and Miller CL (1996) Regulation of Epstein-Barr virus latency by latent membrane protein 2. Trends Microbiol 4:38-42.
Longnecker R, Miller CL, Miao XQ, Marchini A and Kieff E (1992) The only domain which distinguishes Epstein-Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential. J Virol 66:6461-9.
Longnecker R, Miller CL, Tomkinson B, Miao XQ and Kieff E (1993) Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. J Virol 67:5068-74.
Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH and Ronai Z (2005) RACK1 mediates activation of JNK by protein kinase C [corrected]. Mol Cell 19:309-20.
Lu J, Lin WH, Chen SY, Longnecker R, Tsai SC, Chen CL and Tsai CH (2006) Syk tyrosine kinase mediates Epstein-Barr virus latent membrane protein 2A-induced cell migration in epithelial cells. J Biol Chem 281:8806-14.
Luka J, Kallin B and Klein G (1979) Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94:228-31.
Luka J, Klein G, Henle W and Henle G (1978) Detection of the EBV-determined nuclear antigen (EBNA) in Burkitt''s lymphoma and nasopharyngeal carcinoma biopsies by the acid fixed nuclear binding (AFNB) technique. Cancer Lett 4:199-205.
Mamidipudi V, Zhang J, Lee KC and Cartwright CA (2004) RACK1 regulates G1/S progression by suppressing Src kinase activity. Mol Cell Biol 24:6788-98.
Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB and Kieff E (1995) Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2:155-66.
Miller CL, Lee JH, Kieff E and Longnecker R (1994) An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A 91:772-6.
Miller CL, Longnecker R and Kieff E (1993) Epstein-Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J Virol 67:3087-94.
Reinhardt J and Wolff T (2000) The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C. Vet Microbiol 74:87-100.
Reth M and Wienands J (1997) Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 15:453-79.
Ron D, Chen CH, Caldwell J, Jamieson L, Orr E and Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A 91:839-43.
Sample J, Liebowitz D and Kieff E (1989) Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol 63:933-7.
Sang N, Severino A, Russo P, Baldi A, Giordano A, Mileo AM, Paggi MG and De Luca A (2001) RACK1 interacts with E1A and rescues E1A-induced yeast growth inhibition and mammalian cell apoptosis. J Biol Chem 276:27026-33.
Speck P, Kline KA, Cheresh P and Longnecker R (1999) Epstein-Barr virus lacking latent membrane protein 2 immortalizes B cells with efficiency indistinguishable from that of wild-type virus. J Gen Virol 80 ( Pt 8):2193-203.
Tovey MG, Lenoir G and Begon-Lours J (1978) Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276:270-2.
Winberg G, Matskova L, Chen F, Plant P, Rotin D, Gish G, Ingham R, Ernberg I and Pawson T (2000) Latent membrane protein 2A of Epstein-Barr virus binds WW domain E3 protein-ubiquitin ligases that ubiquitinate B-cell tyrosine kinases. Mol Cell Biol 20:8526-35.
Yoshizaki T, Miwa H, Takeshita H, Sato H and Furukawa M (2000) Elevation of antibody against Epstein-Barr virus genes BRLF1 and BZLF1 in nasopharyngeal carcinoma. J Cancer Res Clin Oncol 126:69-73.
石英珠. (1998) 探討EB病毒膜蛋白LMP2A對細胞蛋白質的影響. 台大醫學院微生物研究所碩士論文
衛生署, (1998) 癌症登記年表.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top