跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/05 00:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江博能
研究生(外文):Po-Neng Chiang
論文名稱:核設施附近土壤中銫與鍶之遷移
論文名稱(外文):Transportation of Cesium and Strontium in Soils Nearby Nuclear Facilities
指導教授:王明光
指導教授(外文):Ming-Kuang Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:101
中文關鍵詞:核設施吸附傳輸油菜
外文關鍵詞:Adsorptioncesiumnuclear facilityrapestrontiumtransportation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
污染土壤中放射性核種的來源可能來自核子試爆後大氣沉降、核燃料操作過程的疏失,例如蒸發池、液態儲存槽、掩埋場的洩漏,或是核能生產過程中意外的洩漏或釋出。如果棄置不顧,這些污染土壤不但將立即危害人類健康而且會持續造成環境風險。因此環境中放射性核種的化學與生物交互作用將變的相當重要。本研究目的將針對鄰近核設施土壤中銫與鍶之遷移與轉化進行研究,其中包含銫和鍶吸附動力學、吸附能力、土壤中的傳輸、釋放機制以及評估油菜對銫累積的能力。

為了能夠清楚了解放射性核種外洩事故發生時,洩漏至土壤後,土壤對核種之緩衝之能力,因此分別選定具代表性之土壤進行研究。土壤採樣地點可分為四個地區,分別是鄰近核能研究所、鄰近第三核能發電廠、第一核能發電廠以及蘭嶼暫時貯存廠四個地區之土壤進行試驗。

實驗結果顯示在本研究中,短晶距三氧化物(尤其是與有機鍵結鐵鋁氧化物) 影響對銫和鍶的最大吸附量。根據所有方程式飾配結果,二級速率方程式具有較佳的擬合結果,因此本實驗中選用二級速率方程式來計算速率常數。土壤反應組成顯著的與銫和鍶的最大吸附量有關,也因此影響銫和鍶的動力吸附。

線性與非線性吸附參數導入Lt與Kt土壤中銫和鍶傳輸行為。 由統計分析結果,ARE、ME、RMSE及CV 值顯示MT3DMS 傳輸模式對銫和鍶在土柱中傳輸模擬良好。 最好的預測是由Freundlich 非線性遲滯因子。 應用Freundlich 非線性遲滯因子至一維延散擴散傳輸模式中能獲的良好的預測結果並能評估化合物在土註中傳輸的命運。

磷酸銨誘發137Cs 從污染土壤釋放的動力學可由 two-constant rate equation 描述。 由1 M NH4H2PO4 溶液(pH 4.0)造成污染土壤中137Cs 釋出的速率常數較1 M NaCl 溶液(pH 4.0)抽出高。 然而(NH4)2SO4 、NH4Cl及 KCl 溶液抽出卻有相同的趨勢。低分子量有機酸的分泌會增加氫離子濃度。 H+ 能質子化破烈邊緣的氫氧基及氧原子或是弱化礦物表面的 Mg-O, Fe-O, and Al-O 鍵。 低分子量有機酸是一種強力的錯合配位基,它能與礦物的 OH 及 OH2 基交換並與表面陽離子形成錯合如 Al、Fe及Mg。合併磷酸根與質子誘導效應是控制土壤黏土礦物中銫釋出制磷酸銨溶液中的主要機制。 施用磷酸銨肥料至土壤中會促進 137Cs 釋放並因此增加植物吸收、遷移至地下水以及進入食物鏈的機會。

Lt與Kt土壤中根圈土壤中低分子量有機酸總量與油菜中銫累積量有關。 Lt與Kt土壤影響油菜根圈中低分子量有機酸的量表示土壤中的化學及生物性質能控制根圈土壤有機酸的量與種類。 一般來說揮發性有機酸 (如乙酸、丙酸及丁酸) 的貢獻佔兩種土壤根圈總有機酸的67.8 % 至 87.3 %。 然而Kt根圈土壤中較Lt根圈土壤中有較高的有機酸含量。 更多的銫會從土壤中釋放並增加油菜對銫的吸收。 對於調控根-土壤動態機制的更進一步的研究是必要的並且可以降低放射性元素污染食物鏈。
Abstract
Radionuclide-contaminated soils were contaminated either through accidental spillage or leakage, deposition of airborne material during nuclear testing and incinerator processing, or plume development from evaporation ponds, liquid-storage tanks, and burial grounds and, operation of nuclear facilities. If left untreated, these contaminated soils may represent not only an immediate danger to human health, but also a chronic environmental hazard. Therefore, it is very important for interacting between chemical and biological of radionuclide in the environment. These objectives are focusing on transportation and transformation of cesium and strontium in the soils nearby nuclear facility, including kinetics and isotherm of cesium and strontium, transportation in the soils, release mechanism, and capacity of cesium accumulation in the rape.
Soil sampling was separated to four sites, including Institute of Nuclear Energy Research, the Third Power Plant, the First Power Plant, and Lan-Yu Storage Plant.
The data indicate that among components of the subtropical and tropical soils studied, short-range ordered sesquioxides especially Al and Fe oxides complexed with organics play an important role in influencing their capacity and dynamics of Cs and Sr adsorption.
Both linear and nonlinear equilibrium-controlled sorption parameters were examined to describe the Cs+ and Sr2+ transport behavior in the red and iron-rich calcareous soils. From statistical analysis, the ARE, ME, RMSE and CV values revealed that MT3DMS simulated well with the Cs+ and Sr2+ transportation in soil column. The best predictions and measurements were obtained from Freundlich nonlinear retardation factors. Application of Freundlich nonlinear retardation factors to the one-dimensional advection-dispersion transport equation with an explicit.
The kinetics of the NH4H2PO4-induced 137Cs release from the contaminated soils can be described by a two-constant rate equation. The rate-coefficient values of 137Cs release from contaminated soil in 1 M NH4H2PO4 solution (pH 4.0) were much higher than that of the 1 M NaCl solution (pH 4.0). However, it showed a similar desorption trend in (NH4)2SO4 and NH4Cl, and KCl solutions. The combined effect of phosphate and proton was the major mechanism of 137Cs release from contaminated soils in NH4H2PO4 solution. Application of NH4H2PO4 fertilizer to soil is recommended to promote 137Cs release from soil, and thus also increase opportunity for plant uptake, migration to groundwater and entry into the food chain.
The amounts of LMWOAs present in the rhizosphere soils were co-related to Cs accumulation in rape grown in the Lt and Kt soils. Lt and Kt soils affected the total amount of LMWOAs exudates found in the rhizosphere soil of rape, indicating that chemical and biological properties of soils can alter the composition and quantity of organic acids in the rhizosphere soils. Generally, volatile acids (i. e. acetic, propionic, and butyric acids) contributed for 67.8 % to 87.3 % of the total LMWOAs in the rhizosphere of both soils. However, the Kt soil contains higher total LMWOAs in the rhizosphere soils than that of the Lt soil. More Cs was released from soils and led to increased Cs uptake by rape. Further understanding of the basic mechanisms regulating root-soil dynamics is essential for reducing the contamination of food chain with radioelements.
中文摘要 --------------------------------------------------------------------------------------I
英文摘要 --------------------------------------------------------------------------------------III
目錄 --------------------------------------------------------------------------------------V
表目錄 -------------------------------------------------------------------------------------VII
圖目錄 ------------------------------------------------------------------------------------VIII
第一章 緒論---------------------------------------------------------------------------------1
第二章 臺灣核設施土壤銫和鍶等溫與動力吸附研究------------------------------8
2-1 前言----------------------------------------------------------------------8
2-2 材料與方法-----------------------------------------------------------10
2-2-1 研究區土壤----------------------------------------------------------10
2-2-2 化學分析-------------------------------------------------------------12
2-2-3 黏土礦物分析-------------------------------------------------------14
2-2-4 等溫吸附-------------------------------------------------------------14
2-2-5 動力吸附-------------------------------------------------------------15
2-2-6 放射性銫等溫吸附實驗-------------------------------------------16
2-2-7 137Cs活度測定-----------------------------------------------------16
2-2-8 統計分析-------------------------------------------------------------17
2-3 結果與討論---------------------------------------------------------17
2-5 結論------------------------------------------------------------------38
第三章 銫和鍶在鄰近核設施土壤之傳輸-------------------------------------------39
3-1 前言------------------------------------------------------------------39
3-2 模式描述------------------------------------------------------------40
3-2-1 Linear 等溫吸附-------------------------------------------------42
3-2-2 Langmuir等溫吸附----------------------------------------------42
3-2-3 Freundlich等溫吸附---------------------------------------------43
3-2-4 傳輸模式-----------------------------------------------------------43
3-3 材料與方法---------------------------------------------------------44
3-3-1 實驗室分析----------------------------------------------------------44
3-3-2 批次實驗-------------------------------------------------------------44
3-3-3 管柱實驗-------------------------------------------------------------44
3-3-4 MT3DMS 預測誤差分析-----------------------------------------47
3-4 結果與討論---------------------------------------------------------47
3-4-1 土壤性質-------------------------------------------------------------47
3-4-2 吸附-------------------------------------------------------------------50
3-4-3 傳輸-------------------------------------------------------------------52
3-5 結論------------------------------------------------------------------56
第四章 肥料溶液對污染土壤中放射性銫釋放動力學----------------------------57
4-1 前言------------------------------------------------------------------57
4-2 材料與方法---------------------------------------------------------58
4-2-1 研究區----------------------------------------------------------------58
4-2-2 土壤分析-------------------------------------------------------------58
4-2-3 污染土壤放射性銫釋放動力學----------------------------------59
4-2-4 更新肥料溶液對放射性銫釋放的影響-------------------------59
4-3 結果與討論---------------------------------------------------------59
4-3-1 土壤性質與污染土壤137Cs 釋出量----------------------------59
4-3-2 污染土壤中放射性銫釋放動力學-------------------------------62
4-3-3 肥料更新與 137Cs 釋出------------------------------------------66
4-3-4 銫釋放的機制-------------------------------------------------------68
4-4 結論------------------------------------------------------------------68
第五章 銫污染土壤中油菜(Brassica campestris)
根低分子量有機酸之分泌---------------------------------------------------70
5-1 前言------------------------------------------------------------------70
5-2 材料與方法---------------------------------------------------------------71
5-2-1 土壤採樣----------------------------------------------------------------71
5-2-2 油菜(Brassica campestris) 盆栽試驗----------------------------71
5-2-3 植體與土壤中之銫含量----------------------------------------------72
5-2-4 低分子量有機酸含量-------------------------------------------------72
5-2-5 統計分析----------------------------------------------------------------76
5-3 結果與討論---------------------------------------------------------------76
5-3-1 土壤物理化學特性----------------------------------------------------76
5-3-2 植體所吸收的銫-------------------------------------------------------77
5-3-3 根圈土壤低分子量有機酸 (LMWOAs) --------------------------83
5-4 結論------------------------------------------------------------------------87
第六章 總結----------------------------------------------------------------------------------88
第七章 參考文獻------------------------------------------------------------------------------89


表目錄


表2.1. 供試土壤物理性質------------------------------------------------------------------18
表2.2. 供試土壤化學性質------------------------------------------------------------------19
表2.3. 供試土壤三氧化物含量------------------------------------------------------------21
表2.4. 黏土礦物組成半定量分析---------------------------------------------------------23
表2.5. 土壤中銫和鍶等溫吸附參數------------------------------------------------------25
表2.6. 土壤中放射性銫吸附分配係數---------------------------------------------------27
表2.7. 土壤性質與最大吸附量之相關性------------------------------------------------29
表2.8. 反應過程中銫和鍶的吸附量------------------------------------------------------30
表2.9. 供試土壤銫吸附動力學之不同動力模式之r2、p及SE值-------------------33
表2.10. 供試土壤鍶吸附動力學之不同動力模式之r2、p及SE值------------------34
表2.11. 供試土壤銫和鍶吸附二級速率常數-------------------------------------------37
表3.1. 互溶性取代管柱實驗條件---------------------------------------------------------46
表3.2. 供試土壤物理化學性質-------------------------------------------------------------48
表3.3. 黏土礦物組成半定量分析---------------------------------------------------------49
表3.4. Lt和Kt土壤銫和鍶線性與非線性等溫吸附參數------------------------------51
表3.5. Lt與Kt土壤線性與非線性模式預測之平均相對誤差、最大
誤差、根均方誤差及變異係數------------------------------------------------------55
表4.1. 在0.083至4小時間不同肥料對污染土壤137Cs釋放動力
模式擬合程度比較-------------------------------------------------------------------64
表4.2. 在0.083至4小時間不同肥料對污染土壤137Cs釋放
two-constant速率常數--------------------------------------------------------------65
表5.1. 標準品低分子量有機酸之揮發性質、種類、化學式及中文名稱------------73
表5.2. 供試土壤物理化學性質------------------------------------------------------------78
表5.3. Lt及Kt土壤中施用不同濃度銫後油菜(a)根及(b)莖之生物累積量-------82
表5.4. Lt及Kt土壤施用不同銫濃度中油菜根圈土壤低分子量有機酸含量------85

圖目錄

圖1.1. 放射性核種釋放至環境中潛在傳輸途徑-----------------------------------------2
圖1.2. 雲母中銫和鉀陽離子契型固定位置-----------------------------------------------4
圖 2.1. 研究區域地理位置及採樣位置圖-----------------------------------------------11
圖2.2. 土壤對銫吸附動力學之二級速率方程式飾配圖。實驗條件
為1.0 g L-1 之土壤,pH 4.0,初始濃度CsCl 0.188 mM
,背景溶液為0.01 M NaCl。 快反應時間為前2-30分
鐘;慢反應為30-480分鐘--------------------------------------------------------32
圖2.3. 土壤對鍶吸附動力學之二級速率方程式飾配圖。實驗條件
為1.0 g L-1 之土壤,pH 4.0,初始濃度SrCl2 0.285 mM
,背景溶液為0.01 M NaCl。快反應時間為前2-30分鐘
;慢反應為30-480分鐘-----------------------------------------------------------36
圖3.1. (a)Lt與(b)Kt土壤之銫實驗與預測突破曲線-----------------------------------53
圖3.2. (a)Lt與(b)Kt土壤之鍶實驗與預測突破曲線-----------------------------------54
圖4.1. 1 M NH4H2PO4、0.5 M (NH4)2SO4、1 M NH4Cl、1 M KCl
及1 M NaCl溶液對土壤釋放137Cs(溫度25℃、反應48小時)------------61
圖4.2. (a) 1 M NH4H2PO4、(b) 0.5 M (NH4)2SO4、(c) 1 M NH4Cl
、(d) 1 M KCl及(e) 1 M NaCl 溶液對污染土壤中137Cs
脫附動力學之two-constant速率方程式飾配圖-----------------------------63
圖4.3. (a) 1 M NH4H2PO4、(b) 0.5 M (NH4)2SO4及(c) 1 M NH4Cl
肥料溶液更新對污染土壤釋放137Cs之影響---------------------------------67
圖5.1. 本體或根圈土壤低分子量有機酸的萃取及分析流程------------------------80
圖5.2. Lt與Kt土壤中油菜(a)根與(b)莖之乾重-----------------------------------------79
圖5.3. 在不同CsCl濃度下Lt與Kt土壤中油菜(a)根(b)莖及(c)整株銫累積量--80
圖5.4. Lt及Kt土壤中油菜(a)根及(b)莖中銫濃度-------------------------------81
圖5.5. Lt及Kt土壤中油菜根圈土壤總低分子量有機酸之分佈---------------------86
陳春泉。1976。桃園縣土壤調查報告。臺灣省農業試驗所報告第三十三號,台中,112頁。
陳賢德。1986。蘭嶼之土壤。碩士論文。國立臺灣大學農業化學研究所
臺灣省政府農林廳山地農牧局。1986。臺北縣、基隆市暨臺北市山坡地土壤調查報告。
Ae, N., J. Arihara, K. Okada, T. Yoshihara, and C. Johansen. 1990. Phosphorus uptake by pigeonpea and its role in cropping systems of Indian subcontinent. Science 248: 477-480.
Ahmad, S. H. 1995. Competetive adsorption of 90Sr on soil sediments, pure clay phase, and feldspar minerals. Appl. Radiat. Isot. 46: 287-292.
Allison, L. E., and C. D. Moodie. 1965. Carbonate. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. 1st Ed. Black et al. (eds.). Am. Soc. Agron. Madison, WI, pp. 1379-1396.
Atomic Energy Council. 1995. Institute of Nuclear Energy Researches. Event 625 Explanation Report. pp. 1-36. (in Chinese)
Avery, S. V. 1996. Fate of cesium in the environment: distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. J. Environ. Radioact. 30: 139-171.
Baes, C. F. I., and R. D. Sharp. 1983. A proposal for estimation of soil leaching and leaching constants for use in assessment model. J. Environ. Qual. 12: 17-28.
Baziramakenga, R., R. R. Simard, and F. D. Leroux. 1995. Determination of organic acids in soil extracts by ion chromatography. Soil Biol. Biochem. 27: 349-356.
Boekhold, A. E., and S. E. A. T. M. Van der Zee. 1992. A scalded sorption model validated at the column scale to predict cadmium contents in a spatially variable field soil. Soil Sci. 154: 105-112.
Bolan, N. S., R. Naidu, M. A. R. Khan, R. W. Tillman, and J. K. Syers. 1999. The effects of anion sorption on sorption and leaching of cadmium. Aust. J. Soil Res. 37: 445-460.
Bohn, H. L. 1985. Soil Chemistry. John Wiley and Sons, New York.
Brady, N. C., and R. R. Weil. 2002. Formation of soils from parent materials. In The Nature and Properties of Soils. N. C. Brady and R. R. Weil (eds.). 13th Ed. Prentice Hall, New Jersey, pp.31-74.
Brindley, G. W. 1980. Quantitative X-Ray minerals analysis of clays. In Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Soceity Monograph No. 5. G. W. Brindley, and G. Brown. (eds.). Mineralogical Society, London, pp. 411-438.
Brouwer, E, B. Baeyens, A. Maes, and A. Cremers. 1983. Cesium and rubidium ion equilibria in illite clay. J. Phys. Chem. 87: 1213-1219.
Bunde, R. L., J. J. Rosentreter, M. J. Liszewski, C. H. Hemming, and J. Welhan. 1997. Effects of calcium and magnesium on strontium distribution coefficients. Environ. Geol. 32: 219-229.
Cerling, T. E., and B. P. Spalding. 1982. Distribution and relationship of radionuclides to streambed gravels in a small watershed. Environ. Geol. 4: 99-116.
Chang, C. M., M. K. Wang, T. W. Chang, C. Lin, and Y. R. Chen. 2001. Transport modeling of copper and cadmium with linear and nonlinear retardation factors. Chemosphere 43: 1133-1139.
Chen, M. C., M. K. Wang, C. Y. Chiu, P. M. Huang, and H. B. King. 2001. Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils in a temperature forest soils. Plant Soil 231: 37-44.
Chiang, P. N., M. K. Wang, J. J. Wang, and C. Y. Chiu. (2005) Low molecular weight organic acids exudation of rape (Brassica campestris) roots in cesium-contaminated soils. Soil Sci. 170(9): 726-733.
Cieśliński, G., K. C. J. Van Rees, A. M. Szmigielska, G. S. R. Krishnamurti, and P. M. Huang. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203: 109-117.
Clemente, R. S., and S. O. Prasher. 1992. PESTFADE, a new pesticide fate and transport model: Model development and verification. Trans. ASAE 36: 357-367.
Comans, R. N. J., M. Haller, and P. De Preter. 1991. Sorption of cesium on illite: Non-equilibrium behavior and reversibility. Geochim. Cosmochim. Acta 55: 433-440.
Comans, R. N. J., and D. E. Hockley. 1992. Kinetic of cesium sorption in illite. Geochim. Cosmochim. Acta 56: 1157-1164.
Comans, R. N. J., J. J. Middelburg, J. Zonderhula, J. R. W. Wolttiez, G. J. De Lange, H. A. Das, and C. H. Van der Weijden. 1989. Mobilization of radioceisum in pore water of lake sediments. Nature 339: 367-369.
Cornell, R. M. 1993. Adsorption of cesium on minerals: a review. J. Radioanal. Nucl. Chem. 171: 483-500.
Coughtrey, P. J., and M. C. Thorne. 1983. Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems. A. A. Balkema, Rotterdam.
Cremers, A., A. Elsen, P. De Preter, and A. Maes. 1988. Quantitative analysis of radiocaesium retention in soils. Nature. 335: 247-249.
Demirel, H., I. Özer, I. Çelenk, M. M. Halitligil, and A. Özmen. 1994. Uptake of cesium-137 by crops from contaminated soil. J. Environ. Qual. 23: 1280-1282.
Desmet, G., P. Nassimbeni, and M. Belli. 1990. Transfer of Radionuclides in Natural and Semi-natural Environments. Elsevier Applied Science, London.
Donigian, Jr., A. S., and P. S. C. Rao. 1986. Example model testing studies. In Vandose Zone Modeling of Organic Pollutants. S. C. Hern, and S. M. Melancon. (Eds.) Lewis Publisher. Chelsea, MI, pp. 103-131.
Dumat, C., H. Quiquampoix, and S. Stauton. 2000. Adsorption of cesium by synthetic clay-organic matter complexes: effect of the nature of organic polymers. Environ. Sci. Technol. 34: 2985-2989.
Elless, M. P., and S. Y. Lee. 2002. Radionuclide-contaminated soils: A mineralogical perspective for their remediation. In Soil Mineralogy with Environmental Applications. J. B. Dixon, and D. G. Schulze (eds.). Soil Sci. Soc. Am., Madison, WI, pp. 737-768.
Entry, J. A., N. C. Vance, M. A. Hamilton, D. Zabowsky, L. S. Watrud, and D. C. Adriano. 1996. Phytoremidiation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut. 88: 167-176.
Entry, J. A., L. S. Watrud, R. S. Manasse, and N. C. Vance. 1997. Phytoremediation and remediation and reclamation of soils contaminated with radionuclides. In Phytoremediation of Soil and Water Contaminants. E. L. Kruger, T. A. Anderson, and J. R. Coats. (eds.) ACS. Washington, DC. pp. 299-306
Evans, D. W., J. J. Alberts, and R. A. I. Clark. 1983. Recersible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim. Cosmochim. Acta 47: 1041-1049.
Fetter, C. W. 1993. Contaminant Hydrogeology. Macmillan International, New York.
Filius, A., T. Streck, and J. Richter. 1998. Cadmium sorption and desorption in limed topsoils as influenced by pH: isotherms and simulated leaching. J. Environ. Qual. 27: 12-18.
Fordham, A. W., and K. Norrish. 1983. The nature of soil particles particularly those reacting with arsenate in a series of chemically treated samples. Aust. J. Soil Res. 21: 455-477.
Fox, T. R., and N. B. Comerford. 1990. Low molecular weight organic acids in elected forest soils of the Southwestern USA. Soil Sci. Soc. Am. J. 54: 1139-1144.
Francis, C. W., and F. S. Brinkley 1976. Preferential adsorption of 137Cs to micaceous minerals in contaminated freshwater sediment. Nature 260: 511-513.
Fuhrmann, M, M. M. Lasat, D. Ebbs, L. V. Kochian, and J. Cornish. 2002. Uptake of cesium-137 and strontium-90 from contaminated soil by three plant species; application to phytoremediation. J. Environ. Qual. 31: 904-909.
Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. In Methods of Soil Analysis. A. Klute (ed.). Part 1. 2nd ed., Agron. Monogr. 9, ASA an SSSA, Madison, MI. pp. 383-411.
Gold, H. J. 1977. Mathematical Modeling of Biological Systems. John Wiley and Sons, Toronto, ON.
Grove, D. B., and K. G. Stollenwerk. 1984. Computer model of one-dimensional equilibrium-controlled sorption process. US Geological Survey Water-Resources Investigations Report: 84-4059.
Grütter, A., H. R. von Gunten, M. Kohler, and E. Rössler. 1990. Sorption, desorption and exchange of cesium on glaciofluvial deposits. Radiochim. Acta 50: 177-184.
Hansen, B., P. Kwan, M. M. Benjamin, C. W. Li, and G. V. Korshin. 2001. Use of iron oxide-coated sand to remove strontium from simulated Hanford tank wastes. Environ. Sci. Technol. 35: 4905-4909.
Havlin, J. L., and D. G. Westfall. 1985. Potassium release kinetics and plant response in calcareous soils. Soil Sci. Soc. Am. J. 49: 366-370.
Havlin, J. L., D. G. Westfall, and S. R. Olsen. 1985. Mathematical models for potassium release kinetics in calcareous soils. Soil Sci. Soc. Am. J. 49: 371-376.
Hemond, H. G., and E. J. Fechner-Levy. 1994. The subsurface environment. In Chemical Fate and Transport in the Environment. 2nd ed., Academic Press, San Diego, pp. 197-280.
Higashi, T. 1983. Characterisation of Al/Fe-humus complexes in Dystrandenpts through comparison with synthetic forms. Geoderma 31: 277-288.
Hinz, C., and H. M. Selim. 1994. Transport of zinc and cadmium in soils: experiment evidence and modeling approaches. Soil Sci. Soc. Am. J. 58: 1316-1327.
Hoffland, E., G. R. Findenegg, and J. A. Nelemans. 1989. Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113: 161-165.
Huang, P. M., and R. Grover. 1990. Kinetics and components involved in the adsoption of 2,4-D by soils. In Health and Safety in Agriculture. J. A. Dosman, and P. W. Cockcroft (eds.) CRC Press, Boca Raton, FL, pp. 228-230.
Jabro, J. D., J. D. Toth, X. Dou, R. H. Fox, and D. D. Fritton. 1995. Evaluation of nitrogen version of LEACHEM for predicting nitrate leaching. Soil Sci. 160: 209-217.
Jabro, J. D., W. L. Stout, S. L. Fales, and R. H. Fox. 1997. Nitrate leaching from soil core lysimeters treated with urine or feces under orchard grass: Measurement and simulation. J. Environ. Qual. 26: 89-94.
Jackson, M. L. 1963. Interlayering of expansible layer silicates in soils by chemical weathering. Clays Clay Miner. 11:29-46.
Jackson, M. L. 1979. Soil Chemical Analysis, Advanced Course, 2nd Ed. Department of Soil Science, University of Wisconsin, Madison, WI.
Jackson, M. L., C. H. Lim, and L. W. Zelazny. 1986. Oxides, hydroxides, and aluminosilicates. In Methods of Soil Analysis. Part 1 Physical and Mineralogical methods. A. Klute et al. (eds.) ASA and SSSA, Midson, WI. pp. 101-150.
Jackson, R. E., and K. J. Inch. 1983. Partitioning of strontium-90 among aqueous and mineral species in a contaminanted aquifer. Environ. Sci. Technol. 17: 231-237.
Jones, D. L., P. R. Darrah, and L. V. Kochian. 1996. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180: 57-66.
Jopony, M., and S. D. Young. 1987. A constant potential titration method for studying the kinetics of Cu2+ desorption from soil and clay minerals. J. Soil Sci. 38: 219-228.
Kemner, K. M., D. B. Hunter, P. M. Bertsch, J. P. Kirkland, and W. T. Elam. 1997. Determination of site-specific binding environments of surface sorbed cesium on clay minerals by Cs-EXAFS. J. Phys. IV France 7:777-779.
Kraffczyk, I., G. Trolldenier, and H. Beringer. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol. Biochem. 16: 315-322.
Krishnamurti, G. S. R., P. M. Huang, K. C. J. Van Rees, L. M. Kozak, and H. P. W. Rostad. 1995. Speciation of particulate-bound cadmium of soil and its bioavailability. The analyst 120: 659-665.
Krishnamurti, G. S. R., D. E. F. McArthur, M. K. Wang, and P. M. Huang. 2004a. Biogeochemistry of soil cadmium and the impact on terrestrial food chain contamination. In Biogeochemistry of Soil Elements in the Rhizosphere. P. M. Huang, and G. Gobran (eds.) Elsevier, Amsterdam, The Netherlands. (In Press)
Krishnamurti, G. S. R., M. Megharaj, and R. Naidu. 2004b. Bioavailability of cadmium-organic complexes to soil alga - an exception to the free ion model. J. Agri. Food. Chem. 52: 3894-3899.
Krupka, K. M., D. I. Kaplan, G. Whelan, R. J. Serne, and S. V. Mattigod. 1999. Understanding variation in partition coeffieient, Kd, values. Vol. II. Review of geochemistry and available Kd values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and uranium. U. S. Environmental Protection Agency, Richland, WA.
Kruyts, N., and B. Delvaux. 2002. Soil organic horizons as a major source for radiocescium biorecycling in forest ecosystems. J. Environ. Radioa. 58: 175-190.
Kuo, S., and E. G. Lotse. 1974. Kinetics of phosphate adsorption and desorption by lake sediments. Soil Sci. Soc. Am. Proc. 38: 50-54.
Lapidus, L., and N. R. Amundson. 1952. Mathematics of adsorption in beds. IV. The effect of longitudinal diffusion in ion exchange chromatographic columns. J. Phys. Chem. 56: 984-988.
Lasat, M. M., W. A. Norvell, and L. V. Kochian. 1997. Potential for phytoextraction of 137Cs from a contaminated soil. Plant Soil 195: 99-106.
Lasat, M. M., M. Fuhrmann, S. D. Ebbs, J. E. Cornish, and L. W. Kochian. 1998. Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J. Environ. Qual. 27: 165-169.
Leonard, B. P., and H. S. Niknafs. 1991. Sharp monotonic resolution of discontinuities without clipping of narrow extreme. Comput. Fluids 19: 141-154.
Lilienholm, B. C., L. M. Dudley, and J. J. Juriniak. 1992. Oxalate determination in soils using ion chromatography. Soil Sci. Soc. Am. J. 56: 324-326.
Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley & Sons, New York.
Liu, C., J. M. Zachara, and S. C. Smith. 2004. A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Handford site, USA. J. Contam. Hydrol. 68: 217-238.
Liu, D. C., C. N. Nsu, and C. L. Chuang. 1995. Ion-exchange and sorption kinetics of cesium and strontium in soils. Appl. Radia. Isoto. 46: 839-846.
Loveland, P. J., and P. Dighy. 1984. The extraction of Fe and Al by 0.1 M pyrophosphate solution: Comparison of some techniques. J. Soil Sci. 35: 243-250.
Madrid, L., and E. Daiz-Barrientos. 1996. Nature of the action of a compost from olive mill wastewater on Cu sorption by soils. Toxic. Environ. Chem. 54: 93-98.
Maes, E., A. Iserentant, J. Herbauts, and B. Delvaux. 1999. Influence of the nature of clay minerals on the fixation of radiocesium in an acid brown earth-podzal weathering sequence. Eur. J. Soil Sci. 50: 117-126.
Martin, H. W., and D. L. Sparks. 1983. Kinetics of nonexchangeable potassium release from two Coastal Plain soils. Soil Sci. Soc. Am. J. 47: 883-887.
Martin, R. S., and S. E. Manahan. 1998. Fates of radioactive arsenic, cesium, strontium and organo-chlorine during the gasification of mixed wastes in the presence of organic matter. Chemosphere 37: 531-540.
McBride, M. B. 1994. Environmental Chemistry of Soils. Oxford University Press, New York.
McKeague, J. A., J. E. Brydon, and N. M. Miles. 1971. Differentiation of form of extractable iron and aluminum in soils. Soil Sci. Soc. Am. Proc. 35: 33-38.
McKinley, J. P., C. J. Zeissler, J. M. Zachara, R. J. Serne, R. M. Lindstrom, H. T. Schaef, and R. D. Orr. 2001. Distribution and retention of 137Cs in sediments at the Hanford Site, Washington. Environ. Sci. Technol. 35: 3433-3441.
McLean, E. O. 1982. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2. A. L. page et al. (eds.) ASA and SSSA, Midson, WI. pp. 199-224.
Mehra, O. P., and M. L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7: 317-327.
Melnyk, T. W., F. B. Walton, and L. H. Johnson. 1984. High-level watse glass field burial test: leaching and migration of fission products. Waste Manage. 5: 49-62.
Mench, M., J. L. Morel, A. Guckert, and B. Guillet. 1988. Metal binding with root exudates of low molecular weight. J. Soil Sci. 39: 521-527.
Mishra, S. P.; and D. Tiwary. 1999. Ion exchangers in radioactive waste management. Part XI. Removal of barium and strontium ions from aqueous solutions by hydrous ferric oxide. Appl. Radiat. Isot. 51: 359-366.
Montero, J. P., J. F. Munoz, R. Abeliuk, and M. Vauclin. 1994. A solute transport model for the acid leaching of copper in soil columns. Soil Sci.Soc. Am. J. 58: 678-686.
Nabyvanets, Y. B.; T. F., Gesell, M. H., Jen, and W. P. Chang. 2001. Distribution of 137Cs in soil along Ta-han River Valley in Tau-Yuan County in Taiwan. J. Environ. Radioactivity. 54: 391-400.
Naidu, R., N. S. Bolan, R. S. Kookana, and K. G. Tiller. 1994. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. Euro. J. Soil Sci. 45: 419-429.
Nisbet, A. F., and S. Shaw. 1994. Summary of 5-year lysimeter study on the time-dependent transfer of 137Cs, 90Sr, 239,240Pu and 241Am to crops from three contrasting soil types: 1. transfer to the edible portion. J. Environ. Radioact. 23: 1-17.
Nishita, H., and E. H. Essington. 1967. Effect of chelating agents on the movement of fission products in soils. Soil Sci. 103: 168-176.
Onyatta, J. O., and P. M. Huang. 2003. Kinetics of cadmium release from selected tropical soil from Kenya by low-molecular-weight organic acids. Sol Sci. 168: 234-252.
Pai, C. W., M. K. Wang, W. M. Wang, and K. H. Houng. 1999. Smectites in iron-rich calcareous soil and black soils of Taiwan. Clays Clay Miner. 47: 389-398.
Porro, I., M. E. Newman, and F. M. Dunnivant. 2000. Comparison of batch and column methods for determining strontium distribution coefficients for unsaturated transport in basalt. Environ. Sci. Technol. 34: 1679-1686.
Raad, A.A., 1978. Carbonates. In Manual on Soil Sampling and Methods of Analysis. J. A. McKeague (eds.). 2nd Ed. Can. Soc. Soil Sci., Ottawa, ON, pp. 86-98.
Rhoades, J. D. 1982. Cation exchange capacity. In Methods of Soil Analysis. Part 2, A. L. Page et al. (eds.). Agronomy Monograph 9. 2nd Ed. Am. Soc. Agron., Madison, WI, pp. 149-157.
Rich, C. I., and W. R. Black.1964. Potassium exchange as affected by cation size, pH, and mineral structure. Soil Sci. 97:384-390.
Rigol, A., M. Vidal, and G. Rauret. 1998. Competition of organic and mineral phases in radiocesium partitioning in organic soils of Scotland and the area near Chernobyl. Envrion. Sci. Technol. 32: 663-669.
Salt, C. A., R. W. Mayes, and D. A. Elston. 1992. Effect of season, gazing intensity and diet composition on the radiocesium intake by sheep on a re-seeded hill pasture. J. Appl. Ecol. 29: 378-387.
Sample, E.C., R. J. Soper, and G. J. Racz. 1980. Reactions of phosphate fertilizers in soils. In The role of phosphorus in agriculture. F.E. Khasawneh et al. (eds). Madison, WI: Am. Soc. Agron. and Soil Sci. Soc. Am. pp. 263-310.
Sanchez, A. L., S. M. Wright, E. Smolders, C. Naylor, P. A. Stevens, V. H. Kennedy, B. A. Dodd, D. L. Singleton, and C. L. Barnett. 1999. High plant uptake of radiocesium from organic soils due to Cs mobility and low soil K content. Environ. Sci. Technol. 33: 2752-2757.
Sawhney, B. L. 1964. Sorption and fixation of microquantities of cesium by clay minerals: effect of saturation ion. Soil Sci. Soc. Am. Proc. 28: 183-186.
Sawhney, B. L. 1970. Potassium and cesium ion selectivity in relation to clay mineral structure. Clays Clay Miner. 18:47-52.
Sawhney, B. L. 1972. Selective sorption and fixation of cations by clay minerals: A review. Clays Clay Miner. 20: 93-100.
Schultz, R. K., R. Overstreet, and I. Brashad. 1960. On the soil chemistry of cesium 137. Soil Sci. 89: 16-27.
Seaman, J. C., T. Meehan, and P. M. Bertsch. 2001. Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments. J. Environ. Qual. 30: 1206-1213.
Shaw, G. and J. N. B. Bell. 1989. Competitive effects of potassium and ammonium on cesium uptake kinetics in wheat. J. Environ. Radioact. 12: 238-296.
Sillen, G. L., and A. E. Martell. 1964. Stability Constants of Metal Ion Complexes. Special Publ. 17. The Chemical Society, London.
Smith, J. T., and R. N. J. Comans. 1996. Modelling the diffusive transport and remobilization of 137Cs in sediments: The effects of sorption kinetics and reversibility. Geochim. Cosmochim. Acta. 60: 995-1004.
Smith, J.T., R. N. J. Comans, N. A. Beresford, S. M. Wright, B. J. Howard, and W. C. Camplin. 2000 Pollution - Chernobyl''s legacy in food and water. Nature 405:141.
Smith, W. N., W. D. Reynolds, R. de Jong, R. S. Clemente, and E. Topp. 1995. Water flow through intact soil columns: Measurement and simulation using LEACHM. J. Environ. Qual. 24: 874-881.
Smolders, E., and G. Shaw. 1995. Changes in radiocesium uptake and distribution in wheat during plant development: A solution culture study. Plant Soil 176:1-6.
Soil Survey Staff. 2003. Key Soil Taxonomy. 9th Ed. United States Department of Agriculture and Soil Conservation Service. Washington, DC.
Spalding, B. P., and I. R. Spalding. 2001. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions. Environ. Sci. Technol. 35: 365-373.
Sparks, D. L. 1989. Kenetics of Soil Chemical Process. Academic Press, New Work.
Sparks, D. L. 2002. Environmental Soil Chemistry. 2nd Ed. Academic Press, New Work.
Sparks, D. L., L. W. Zelazny, and D. C. Martens. 1980. Kinetics of potassium exchange in a Paleudult from the Coastal Plain of Virginia. Soil Sci. Soc. Am. J. 44: 37-40.
Sposito, G. 1989. The Chemistry of Soils. Oxford University Press, New York.
Standring, W. J. F., D. H. Oughton, and B. Salbu. 2002. Potential romobilization of 137Cs, 60Co, 99Tc and 90Sr from contaminated Mayak sediments in river and Estuary enviroments. Environ. Sci. Technol. 36: 2330-2337.
Staunton, S. and M., Roubaud. 1997. Adsorption of 137Cs on montmorillonite and illite: effect of charge compensating cation, ionic strength, concentration of Cs, K, and fulvic acid, Clay Clay Miner. 45: 251-260.
Stevenson, F. J. 1967. Organic acids in soil. In Soil Biochemistry. A. D. Mclaren, and G. H. Peterson (eds.). Marcel Dekker, New York, NY. pp. 119-149
Szmigielska, A. M., K. C. J. Van Ress, G. Cieslinski, and P. M. Huang. 1997. Comparison of liquid and gas chromatography for analysis of low molecular weight organic acid in rhizosphere soil. Commun. Soil Sci. Plant Anal. 28: 99-111.
Szmigielska, A. M., K. C. J. Van Ress, G. Cieslinski, and P. M. Huang. 1996. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat. J. Agric. Food Chem. 44: 1036-1040.
Taruma, T., and D. G. Jacobs. 1960. Structural implications in cesium sorption. Health Phys. 2:391-393.
Tegen, I., and H. Dorr. 1996. Mobilization of cesium in organic rich soils: Correlation with production of dissolved organic carbon. Water, Air, Soil Pollut. 88: 133-144.
Tiller, K.G. 1988. Heavy metals in soils and their environmental significance. Adv. Soil Sci. 9: 113-142.
Tisdale, S.L., W. L. Nelson, and J. L. Havlin. 1993. Soil Fertility and Fertilizers. Macmillan Publishing Company, New York, NY.
Walkley, A., and C. A. Black. 1934. An experimentation of Detjareff method and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29-39.
Wang, Z., S. Zhang, and X. Q. Shan. 2004. Effects of low-molecular-weight organic acids on uptake of lanthanum by wheat roots. Plant Soil 261: 163-170.
Wauters, J., A. Elsen, A. Cremers, A. V. Konoplev, A. A. Bulgakov, and R. N. J. Comans. 1996. Prediction of solid/liquid distribution coefficients of radiocesium in soils and sediments Part one: a simplified procedure for the solid phase specieation of radiocesium. Appl. Geochem. 11: 589-594.
Wauters, J., L. Sweeck, E. Valcke, A. Elsen, and A., Cremers. 1994. Availability of radiocesium in soils: A review methodology. Sci. Total Environ. 157: 239-248.
Whittig, L. D., and W. R. Allardice. 1986. X-ray diffraction technique. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. A. Klute, (eds.) ASA and SSSA, Madison, WI, pp. 331-362.
Year, T. S., R. Vallejo, J. Tent, G. Rauret, N. Omelyanenko, U. Ivanov. 1999. Mulching as a countermeasure for crop contamination within the 30 km zone of Chernobyl Nuclear Power Plant. Environ. Sci. Technol. 33: 882-886.
Zachara, J. M., S. T. Smith, C. Liu, J. P. McKinley, R. J. Serne, and P. L. Gassman. 2002. Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim. Cosmochim. Acta 66: 193-211.
Zhang, F. S., J. Ma, and Y. P. Cao. 1997. Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparing soluble inorganic phosphates by radish (Raghanus satiuvs L.) and rape (Brassica napus L.) plants. Plant Soil 196: 261-264.
Zheng, C., and P. P. Wang. 1998. MT3DMS, a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Department of Geology and Mathematics, University of Alabama, Tuscaloosa, AL.
Zhu, Y. G., and G. Shaw. 2000. Soil contamination with radionuclides and potential remediation. Chemosphere 41: 121-128.
Zhu, Y. G., G. Shaw, A. F. Nisbet, and B. T. Wilkins. 2000. Effect of potassium starvation on the uptake of radiocesium by spring wheat (Triricum aestivum cv. Tonic). Plant Soil 220: 27-34.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊