跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周家琳
研究生(外文):Chia-Lin Chou
論文名稱:應用近紅外光技術檢測單粒白米含水率
論文名稱(外文):Detecting the Moisture Content of Single Rice Kernels Using Near Infrared Technique
指導教授:盧福明盧福明引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:83
中文關鍵詞:近紅外光多光譜影像單粒白米含水率線上檢測
外文關鍵詞:near infrared spectroscopymulti-spectral imaging systemsingle rice kernelsmoistureon-line inspection
相關次數:
  • 被引用被引用:3
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為建立白米內部品質在近紅外光譜短波段(750-1100nm)之檢測模式,並探討應用於快速檢測動態單粒白米之內部品質之可行性。本研究之白米內部品質以水分為指標。
本研究以連續波段之近紅外光譜儀進行靜態單粒白米含水率之檢測,並應用小型光纖光譜儀(S1024DW,Ocean)和實驗室型分光光譜儀(FOSS NIRS 6500)兩種儀器進行光譜量測工作。小型光纖光譜儀反射式實驗中(642-1217nm),利用部份最小平方差迴歸(PLSR)所得之迴歸式之判定係數R2 = 0.966,標準校正誤差(SEC) = 0.899。實驗室型分光光譜儀反射式實驗中(全波段400-2500nm),以原始光譜進行部分最小平方差迴歸(PLSR)所得到之檢量線判定係數R2 = 0.981,標準校正誤差(SEC) = 0.543。小型光纖光譜儀穿透式實驗中(部份波段642-1217nm)以部分最小平方差迴歸(PLSR)所得到之含水率檢量線判定係數R2 = 0.968,標準校正誤差(SEC) = 0.878。
單粒白米動態檢測系統係應用近紅外光多光譜影像系統在910、960和1014nmn三個波長之組合來檢測移動中單粒白米樣本之含水率。本系統以部分最小平方差迴歸(PLSR)所得之含水率檢量線之判定係數R2 = 0.651,標準校正誤差(SEC) = 2.518。
應用近紅外光光譜預測單粒白米含水率之效果以靜態方式以全波段反射式光纖所得到之效果為較佳。近紅外光多光譜影像系統在動態檢測含水率之結果還有改善空間,但確具有運用於生產線上檢測動態單粒白米內部品質之可行性。
The objective of this study was to evaluate the feasibility of applying near infrared technology for establishing regression model to detect internal qualities of single rice kernels. The short near infrared wavelength range from 750 nm to 1100 nm was used to develop an on-line moisture content detecting system for single rice kernels.
NIR spectrophotometers of S1024DW (Ocean Optics) and FOSS NIRS 6500 (Foss NIRSystems) with specially designed fiber-optics were used to measure the NIR spectra of stationary rice kernels. The partial least squares regression (PLSR) was adopted for predicting rice moisture content by analyzing reflectance spectra and transmittance spectra. The coefficient of determination (R2) and standard error of calibration (SEC) for S1024DW reflectance spectra, FOSS NIRS 6500 reflectance spectra and S1024DW transmittance spectra were respectively 0.966 & 0.899, 0.981& 0.543, and 0.968 & 0.878.
The near infrared multi-spectral imaging system with detection wavelength range at 910 nm, 960 nm and 1014 nm was adopted for on-line moisture content measurement of running single rice kernels. The coefficient of determination (R2) and standard error of calibration (SEC) obtained by PLSR were respectively 0.651 and 2.518.
The predictions of moisture content of stationary single rice kernels are better in the system as the reflection spectra were adopted instead of transmittance spectra at near infrared wavelength range from 750nm to 2500nm. Further improvement of the near infrared multi-spectral imaging system developed in this study is required for future implementing this system in the on-line rice milling industry.
誌 謝 i
摘 要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 前言 1
1.1前言 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 稻米之介紹 3
2.2 近紅外光吸收光譜之理論基礎 4
2.2.1 吸收光譜的基本原理 4
2.2.2近紅外光譜的定量分析 11
2.2.3 近紅外光光譜校正線之建立流程 14
2.2.4 近紅外光譜資料之迴歸模式 16
2.2.5 校正線性能評估之相關定義 19
2.2.6 各成分對近紅外光之特徵波長 21
2.3 近紅外光之應用與研究 23
2.3.1 應用近紅外光光譜分析穀物成分的研究 23
2.3.2 應用近紅外光多光譜影像的研究 27
第三章 實驗設備與方法 29
3.1 實驗樣本 30
3.2儀器設備 31
3.2.1靜態單粒白米品質檢測儀器設備 31
3.2.2 動態單粒白米之品質檢測儀器設備 36
3.3實驗流程 41
3.3.1 靜態單粒白米品質檢測實驗流程 41
3.3.2 動態單粒白米品質檢測實驗流程 42
3.4化學分析 46
第四章 結果與討論 47
4.1 靜態單粒白米含水率檢測實驗結果 48
4.1.1小型光纖光譜儀(S1024DW)反射式實驗 48
4.1.2 實驗室型分光光譜儀(FOSS NIRS 6500)反射式實驗 53
4.1.3 小型光纖光譜儀(S1024DW)穿透式實驗 56
4.2 動態單粒白米之含水率檢測實驗結果 63
4.2.1 動態近紅外光多光譜影像系統 63
4.3靜態單粒白米與動態單粒米含水率實驗結果之比較 73
第五章 結論與建議 76
5.1 結論 76
5.2 建議 77
參考文獻 80
1.李匡邦、許東明、何東英。1997。光譜化學分析。初版。台北﹕揚智。
2.汪呈因。1974。稻作學與米。初版。台北: 徐氏基金會。
3.吳永培、許志聖、陳一心。1999。近紅外光分析技術應用於糙米化學成分含量之測定。中華農學會報1(3):333-342。
4.邵遵文、郭寶錚。2004。不同統計方法對近紅外線光譜資料預測白米粉之破裂黏度的模擬研究。中華農學會報5(2):129-142。
5.張智星。2004。MATLAB程式設計與應用。初版。新竹: 清蔚科技。
6.陳世銘、邱宗榮。1990。香蕉成熟度與其光學反射性質之探討。中國農業工程學報36(1):168-177。
7.陳加增。2000。近紅外光應用於水果糖酸度線上檢測之研究。碩士論文。台北﹕國立台灣大學生物產業機電工程學研究所。
8.陳陵援。1989。儀器分析。六版。P.39-93。台北﹕三民。
9.陳世銘、黃政偉、黃竣吉、吳德輝、揚智凱、蔡養正、繆八龍。2003。稻株含氮量多光譜影像遙測系統之研發。台灣農業機械17(5):10-12。
10.曾瑞田、林達德。2000。稻穀含水率近紅外光感測器之初步探討。中華農業機械論文發表會論文摘要集,p121-122。臺北市:中華農業機械學會。
11.彭智平。1995。以近紅外線分光光度計偵測影響稻米食味之主要成分。碩士論文。台北 : 國立台灣大學農業機械學研究所。
12.楊珮雅、洪梅珠、郭寶錚。2000。利用近紅外光分析儀檢測白米粉末之黏度特性。台中區農業改良場研究彙報68:19-29。
13.盧福明。1986。農產加工工程學。初版。台北: 茂昌
14.劉民卿。1994。以近紅外線光譜偵測稻米的含水率及蛋白質含量。碩士論文。台北﹕國立台灣大學農業機械學研究所。
15.劉昌群、彭智平、蕭介宗。1997。稻米近紅外光譜之多變數分析。農業機械學刊6 (2):9-19。
16.羅蘇秦、張世英。1999。近紅外光譜儀器之分析技術及其應用。科儀新知20(5):13~30。臺北市 : 行政院國家科學委員會精密儀器發展中心。
17.蘇正翔。2002。近紅外光影像應用於白米內部品質檢測。碩士論文。台北﹕國立台灣大學生物產業機電工程學研究所。
18.鐘立晨、丁海曙。1987。分子光譜及激光。初版。北京: 電子工業。
19.鐘鎮錫。1996。榖溫及含水率對近紅外線分光光度計偵測稻米品質的影響。碩士論文。台北﹕國立台灣大學農業機械學研究所。
20.Bull, C. R. 1991. Wavelength selection for near-infrared reflectance moisture meters. Journal of agricultural engineering research 49(2):113-125.
21.Chang, W. H., S. Chen and C. C. Tsai. 1998. Development of a universal algorithm for use of NIR in estimation of soluble solids in fruit juices. Transactions of the ASAE 41(6):1739-1745.
22.Giangiacomo, R. and G. G. Dull. 1986. Near infrared spectrophotometic determination of individual sugars in aqueous mixtures. Journal of Food Science 51(3):679-683.
23.Halliday, D., R. Resnick and K. S. Krane. 1992. Physics 4th Edition. John Wiley & Sons, Inc.
24.Hruschka, W. R. 1987. Data Analysis: Wavelength Selection Methods. In "Near-Infrared Technology in the Agricultural and Food Industries", ed. by P. C. Williams and K.H. Norris, 39-57. St. Paul: American Association of Cereal Chemists.
25.Ingle, J. D. and S. R. Grouch. 1988. Spectrochemical Analysis., 323-351. Englewood Cliffs: Prentice-Hall .
26.Jerome, J. and J. Workman. 1992. NIR Spectroscopy calibration basics. In "Handbook of Near-Infrared Analysis", ed. Burns and Ciurczak , 247-250. New York : Marcel Dekker, Inc.
27.Kawamura, S., M. Natsuga, K. Takekura and K. Itoh. 2003. Development of an automatic rice-quality inspection system. Computers and Electronics in Agriculture 40: 115-126.
28.Long, R. L., K. B. Walsh and C. V. Greensill. 2005. Sugar “imaging” of fruit using a low cost charge-coupled device camera. Journal of near infrared spectroscopy 13: 177-186.
29.Maerten, K., P. Reyns and J. De Baerdemaeker. 2004. On-line measurement of grain quality with NIR technology. Transaction of the ASAE 47(4):1135-1140.
30.Mark, H. 1991.Principles and practice of spectroscopic calibration. John Willey, New York.
31.Miller, C. E. 1987. Chemical Principles of Near-Infrared Technology. In "Near-Infrared Technology in the Agricultural and Food Industries", ed. by P. C. Williams and K.H. Norris, 19-37. St. Paul: American Association of Cereal Chemists.
32.Morimoto, S., W. F. Mcclure and D. L. Stanfield. 2001. Hand-held NIR spectrometry: Part I: An instrument based upon gap-second derivative theory. Applied spectroscopy 55(2):182-189.
33.Muramoto, A., K. Kato and Y. Morio. 2001. Moisture distribution image of grain layer surface using multi-wavelength near 970nm. 3rd IFAC/CIGR Workshop on Control Applications in Post-Harvest and Processing Technology. Tokyo.
34.Murray, I. and P. C. Williams. 1990. Chemical principle of near-infrared technology. In "Near-Infrared Technology in the Agricultural and Food Industries", ed. by P. C. Williams and K. H. Norris, p.17-24. St. Paul: American Association of Cereal Chemists.
35.Rittiron, R., S. Saranwong and S. Kawano. 2004. Useful tips for constructing a near infrared-based quality sorting system for single brown-rice kernels. Journal of near infrared spectroscopy 12: 133-139.
36.Tsuta, M., J. Sugiyama and Y. Sagara. 2002. Near-infrared imaging spectroscopy based on sugar absorption band melons. Journal of Agricultural and Food Chemistry 50(1):48-52.
37.Uddin, M., S. Ishizaki, E. Okazaki and M. Tanaka. 2002. Near-infrared reflectance spectroscopy for determining end-point temperature of heated fish and shellfish meats. Journal of the Science of Food and Agriculture 82:286-292.
38.van den Broek , W. H. A. M., D. Wienke , W. J. Melssen , L. M. C. Buydens. 1998. Plastic material identification with spectroscopic near infrared imaging and artificial neural networks. Analytica Chimica Aeta 361;161-176.
39.Wilson, R. H. and E. K. Kemsley. 1993. Infrared spectroscopic methods. In "Food Process Monitoring Systems", ed. by A. C. Pinder and G. Goderey, 40-57. London : Chapman & Hall .
40.Wu, J. G., C. H. Shi and X. M. Zhang. 2002. Estimating the amino acid composition in the milled rice powder by near-infrared reflectance spectroscopy. Field Crop Research 75(1): 1-7.
41.Wu, J. G. and C. H. Shi. 2004. Prediction of grain weight, brown rice weight and amylase content in single rice grain using near-infrared reflectance spectroscopy. Field Crop Research 87(1): 13-21.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top