跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/15 01:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃維凡
研究生(外文):Wei-Fan Huang
論文名稱:以前處理提升稻殻纖維素水解效率之研究
論文名稱(外文):Using Acid and Alkali Pretreatment (rice hulls) to Enhance Cellulase Hydrolysis Efficiency
指導教授:謝志誠謝志誠引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:65
中文關鍵詞:乙醇酸處理鹼處理稻殼酵素水解
外文關鍵詞:alcoholacidalkalirice hullenzymehydrolysis
相關次數:
  • 被引用被引用:15
  • 點閱點閱:616
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究以稻殼為原料,探討利氫氧化鈉與硫酸,於不同溫度(30、60、90℃),不同濃度(0.25、0.2、0.15M)與不同前處理時間(20、40、60分鐘)等條件下進行前處理,先分析前處理後之水解液含還原糖之濃度,再利用纖維酵素水解脢,於pH值4.6、溫度50℃、酵素液濃度21U/mL、基質比1%等條件下就殘留之固體進行酵素水解;並探討前處理溫度、時間與酸濃度對於酵素水解轉換率之影響。研究結果發現:在前處理溫度90℃下,酸水解液中之還原醣濃度隨著酸濃度與前處理時間之增加而增加,鹼處理液則不然。經過0.25M之氫氧化鈉,於前處理溫度90℃、前處理時間60分鐘條件下前處理者,其後續之酵素水解效果最好,其總轉換率可達到80%。
關鍵字:乙醇、酸處理、鹼處理、稻殼、酵素水解。
Rice hull, a complex lignocellulosic material with high lignin and ash content, has the potential to serve as a low-cost feedstock for production of ethanol.
In this study, rice hull was pretreated by dilute NaOH and H2SO4 at different temperature (30, 60, 90°C) with different concentration(0.25, 0.2, 0.15 M) and different treatment time(20、40、60 minutes). Reducing sugars in the hydrolyzate are analyzed.
The solid residues were hydrolyzed by cellulase from Trichoderma reesei C2730 under conditions of pH(4.6), temperature (50℃), enzyme concentration (21U/mL) and enzyme to substrate ratio (1%). The effects of pretreatment time, temperature and acid/base concentration on enzymatic hydrolysis are studied.
The effect of acid pretreatment is not obvious. Results show that alkaline pretreatment can enhance the saccharification. Pretreated rice hull hydrolyzed with Trichoderma reesei C2730 cellulase showed 80% sacchrification.
Keywords: ethanol; acid pretreatment; alkaline pretreatment; rice hull; enzymatic hydrolysis
目錄
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 前言 1
第二章 文獻探討 3
2-1 木質纖維素 3
2-2 生質乙醇製程 7
2-2-1 濃酸水解製程 7
2-2-2 稀酸水解製程 8
2-2-3 酵素水解製程 10
2-3 前處理 12
2-3-1機器粉碎 12
2-3-2裂解 13
2-3-3 高壓熱水處理法 13
2-3-4 蒸氣爆裂法 13
2-3-5 二氧化碳爆裂法 14
2-3-6 稀釋酸處理法 14
2-3-7 稀釋酸穿流處理法 15
2-3-8 氨水前處理法 15
2-3-9 石灰前處理法 15
2-4酵素水解 17
2-4-1 纖維水解脢 17
2-4-2 纖維水解脢之活性 18
2-4-3 影響酵素水解之因素 20
2-5醱酵 21
2-6 同步醣化與醱酵 22
2-7稻殼之應用 23
第三章 材料與方法 24
3-1 分析項目與方法 24
3-1-1 稻殼之組成 24
3-1-2 標準曲線之建立與水解液之分析 25
3-2 實驗藥品與設備 26
3-3 實驗方法 30
3-3-1 預備處理 30
3-3-2 鹼液前處理 30
3-3-3 酸液前處理 31
3-3-4 酵素水解 31
第四章 結果與討論 32
4-1 稻殼組成成份之分析 32
4-2 DNS標準曲線之建立 33
4-3 前處理 34
4-3-1 以NaOH前處理 34
4-3-1-1 前處理溫度之影響 34
4-3-1-2 NaOH濃度之影響 35
4-3-1-3 小結 36
4-3-2 以H2SO4前處理 36
4-3-2-1 前處理溫度之影響 36
4-3-2-2 H2SO4濃度之影響 37
4-3-2-3 小結 38
4-3-3 NaOH與H2SO4前處理之比較 38
4-4 酵素水解 41
4-4-1 無前處理之酵素水解 41
4-4-1-1水解時間之影響 41
4-4-1-2基質比之影響 42
4-4-2 以NaOH前處理後之酵素水解 44
4-4-2-1 NaOH濃度之影響 44
4-4-2-2 前處理時間之影響 46
4-4-2-3 前處理溫度之影響 49
4-4-3 以H2SO4前處理後之酵素水解 50
4-4-3-1 H2SO4濃度之影響 50
4-4-3-2 前處理時間之影響 52
4-4-3-3 前處理溫度之影響 55
4-4-4 有無前處理之比較 56
第五章 結論 59
參考文獻 60
參考文獻
1.尤立智。2003。嗜高溫纖維分解菌纖維分解酵素的探討。碩士論文。高雄市:國立中山大學生物科學研究所。
2.行政院農業委員會農糧署, 2004
3.齊倍慶。2000。從堆肥中篩選纖維素分解酵素生產菌及其酵素性質研究。碩士論文。新竹:國立清華大學生命科學研究所。
4.戴上凱。2004。熱穩定性纖維素分解細菌分離株之特性探討與親緣關係之研究。博士論文。高雄市:國立中山大學生物科學研究所。
5.Association of Official Analytical Chemists. 2000. Official methods of analysis of the Association of Official Analytical Chemists [serial] The Association. USA: Washington, DC.
6.Ballesteros, M.; J. M. Oliva; M. J. Negro; P. Manzanares; I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry 39:1843-1848.
7.Badal C. Saha, B. Loren. Iten, A.Michael Cotta and Y. Victor Wu. Dilute Acid Pretreatment, Enzymatic Saccharification, and Fermentation of Rice Hulls to Ethanol. 2005. Biotechnol. Prog. 21, 816-822
8.Bhat, M. K. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 15:583-620.
9.Bisaria, V. S. and S. Mishra. 1989. Regulatory Aspects of Cellulase Biosynthesis and Secretion. Critical Reviews in Biotechnology 9:61-103.
10.Brink, D. L. 1993. Method of treating biomass material. U.S. Patent No. 5,221,357.
11.Brink, D. L. 1997. Enzymatic hydrolysis of biomass material. U.S. Patent No. 5,628,830.
12.Chang, M. M.; T. Y. C. Chou; G. T. Tsao. 1981. Structure, pretreatment and hydrolysis of cellulose. Advances in Biochemical Engineering 20:15-42.
13.Chang, V. S.; M. Nagwani; M. T. Holtzapple. 1998. Lime pretreatment of crop residues bagasse and wheat straw. Applied Biotechnology 74:135-159.
14.Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate analysis : a practical approach ILR Press, Oxford [England] ; Washington DC.
15.Cheung, S. W. and B. C. Anderson. 1997. Laboratory investigation of ethanol production from municipal primary wastewater solids. Bioresource Technology 59:81-96.
16.Clark, T. A. and K. L. Mackie. 1987. Steam explosion of the soft-wood Pinus radiata with sulphur dioxide addition.I.process optimzation. J. Wood Chem. Technol 7:373-403.
17.Cosgrove, D. J. 1998. Cell Walls: Structures, Biogenesis, and Expansion. In: Plant Physiology. , In L. Taiz and E. Zeiger, eds. Sunderland: Sinauer Associates, Inc.
18.Dale, B. E. and M. J. Moreira. 1982. A Freeze-Explosion Technique for Increasing Cellulose Hydrolysis. Biotechnology and Bioengineering:31-43.
19.DOE. 2006a. U.S. Department of Energy: Energy Efficiency and Renewable Energy. Available at: www.eere.energy.gov/biomass/ dilute_acid.html. Accessed 10 April 2006.
20.DOE. 2006b. U.S. Department of Energy: Energy Efficiency and Renewable Energy. Available at: www.eere.energy.gov/biomass/concentrated_acid.html. Accessed 10 April 2006.
21.DOE. 2006c. U.S. Department of Energy: Energy Efficiency and Renewable Energy. Available at: www.eere.energy.gov/biomass/ enzymatic_hydrolysis.html. Accessed 10 April 2006.
22.DOE. 2006d. U.S. Department of Energy: Energy Efficiency and Renewable Energy. Available at: www.eere.energy.gov/biomass/process_description.html. Accessed 10 April 2006.
23.Duff, S. J. B. and W. D. Murray. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology 55:1-33.
24.Esteghlalian, A..; A. G. Hashimoto; J. J. Fenske; M. H. Penner. 1997. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology 59:129-136.
25.Fan, L. T.;M. M. Gharpuray and Y. H. Lee. 1987. Cellulose hydrolysis Biotechnology Monographs, p. 57. Springer, Berlin.
26.Farone, W. A. and J. E. Cuzens. 1998. Method of producing sugars using strong acid hydrolysis. U.S. Patent No. 5,726,046.
27.Gregg, D. J. and J. N. Saddler. 1996. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering 51:375-383.
28.Holtzapple, M.T.; A.E. Humphrey; J.D. Taylor. 1989. Energy-Requirements for the Size-Reduction of Poplar and Aspen Wood. Biotechnology and Bioengineering 33:207-210.
29.Huang, X.L. and M. H. Penner. 1991. Apparent Substrate-Inhibition of the Trichoderma-Reesei Cellulase System. Journal of Agricultural and Food Chemistry 39:2096-2100.
30.Kadar, Z.; Z. Szengyel; K. Reczey. 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products 20:103-110.
31.McMillan, J. D. 1994. Enyzmatic Conversion of Biomass for Fuels Production, p. 294-324, In M. E. Himmel, et al., eds. Enymatic Conversion of Biomass for Fuels Production, Vol. 566. ACS, Washington, DC.
32.Meshartree, M.; B. E. Dale; W. K. Craig. 1988. Comparison of Steam and Ammonia Pretreatment for Enzymatic-Hydrolysis of Cellulose. Applied Microbiology and Biotechnology 29:462-468.
33.Millett, M. A;, M. J. Effland; D.P. Caulfield. 1979. Influence of fine grinding on the hydrolysis of cellulosic materials-acid versus enzymatic. Advances in Chemistry Series 181:71-89.
34.Mok, W. S. L. and M.J. Antal. 1992. Uncatalyzed Solvolysis of Whole Biomass Hemicellulose by Hot Compressed Liquid Water. Industrial & Engineering Chemistry Research 31:1157-1161.
35.Mok, W. S. L. and M. J. Antal. 1994. Biomass fraction by hot compressed liquid water., p. 1572-1582, In A. V. Bridgewater, ed. Advances in Thermochemical Biomass Conversion. Blackie Academic&Peofessional, New York.
36.Morjanoff, P. J. and P. P. Gray. 1987. Optimization of Steam Explosion as a Method for Increasing Susceptibility of Sugarcane Bagasse to Enzymatic Saccharification. Biotechnology and Bioengineering 29:733-741.
37.Mosier, N.; C. Wyman; B. Dale; R. Elander; Y. Y. Lee; M. Holtzapple; M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellelosic biomass. Bioresource Technology 96:673-686.
38.Mullings, R. 1985. Measurement of Saccharification by Cellulases. Enzyme and Microbial Technology 7:586-591.
39.Oh, K. K.; T. Y. Kim; Y. S. Jeong; S. I. Hong. 1996. Bioconversion of cellulose to ethanol by the temperature optimized simultaneous saccharification and fermentation. Renewable Energy 9:962-965.
40.Saha, B. C.; L. B. Iten; M. A. Cotta; Y. V. Wu. 2005a. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress 21:816-822.
41.Saha, B. C.; L. B. Iten; M. A. Cotta; Y. V. Wu. 2005b. Dilute acid pretreatment, enzymatic saccharification, and fermentation of wheat straw to ethanol. Process Biochemistry 40:3693-3700.
42.Sharma, S. K.; K. L. Kalra; H. S. Grewal. 2002a. Enzymatic saccharification of pretreated sunflower stalks. Biomass & Bioenergy 23:237-243.
43.Soderstrom, J.; M. Galbe; G. Zacchi. 2005. Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. Journal of Wood Chemistry and Technology 25:187-202.
44.Sun, Y. and J. Y. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83:1-11.
45.Szebgyel, Z. 2000. Ethanol from wood cellulose enzyme production., Lund University, Sweden: Lund.
46.Teixeira, L. C.; J. C. Linden; H. A. Schroeder. 1999. Optimizing peracetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel. Renewable Energy 16:1070-1073.
47.Torget, R.; C. Hatzis; T. K. Hayward; T. A. Hsu; G. P. Philippidis. 1996. Optimization of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass conversion to ethanol. Applied Biochemistry and Biotechnology 57-8:85-101.
48.vonSivers, M. and G. Zacchi. 1996. Ethanol from lignocellulosics: A review of the economy. Bioresource Technology 56:131-140.
49.Wright, J. D. 1998. Ethanol from biomass by enzymatic hydrolysis. Chem. Eng. Prog. 84:62-74.
50.Wyman, C. E. 1994. Ethanol from Lignocellulosic Biomass - Technology, Economics, and Opportunities. Bioresource Technology 50:3-16.
51.Xiao, Z. Z.; R. Storms; A. Tsang. 2004. Microplate-based filter paper assay to measure total cellulase activity. Biotechnology and Bioengineering 88:832-837.
52.Zheng, Y. Z.; H. M. Lin; G. T. Tsao. 1998. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology Progress 14:890-896.
53.Zhu, S. D.; Y. X. Wu; Z. N. Yu; X. A. Zhang; C. W. Wang; F. Q. Yu; S. W. Jin; Y. F. Zhao; S. Y. Tu; Y. P. Xue. 2005. Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Biosystems Engineering 92:229-235.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top