跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/25 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林瑞龍
研究生(外文):Ruei-Long Lin
論文名稱:矽鍺成長於絕緣層上覆矽之紅外光特性與異質接面內部光發射紅外光偵測器
論文名稱(外文):Infrared characteristics of SiGe on SOI and heterojunction internal photoemission infrared photodetector
指導教授:鄭鴻祥鄭鴻祥引用關係
指導教授(外文):Hung-Hsiang Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:矽鍺異質接面紅外光偵測器
外文關鍵詞:SiGeSiGeheterojunctioninfrareddetector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,紅外光偵測器發展普遍,在軍事上、醫學上、以及天文學上等等具有很大的貢獻。而隨著元件尺寸的縮小,積體電路的發展之下,以矽鍺(IV-IV族)為材料的元件,更是被高度重視著。本篇論文重心,以矽鍺材料為主,製作出矽鍺/矽異質接面內部光發射(HIP)紅外光偵測器,此偵測器有許多優勢,例如有良好的均勻性、對垂直入射光有較好的靈敏度,較高的響應度,以及容易與電路作整合。
除此之外,近幾年來以絕緣層上覆矽(SOI)的技術,應用在金屬-氧化物-半導體(MOS)元件上有良好的操作特性,例如降低漏電流、較少的寄生電容、低功率和高速元件等等。
因此,欲結合上述之優勢,矽鍺/矽異質接面內部光發射紅外光偵測器成長在絕緣層上覆矽已被成功製作出,並著重以傅氏紅外線光譜儀來量測其結構的紅外光之吸收特性。
Recently, infrared detectors provide greatest contributions and functions in military, medical and astronomy. In order to integrability with the readout circuitry, we think highly of the devices mainly fabricated by SiGe. And the Si1-xGex/Si heterojunction internal photoemission (HIP) infrared photodetectors have many advantages, such as excellent uniformity, sensitivity to normally incident radiation, higher responsivity and easier integration with readout circuitry.
Besides, silicon-on-insulator (SOI) technology has been used in CMOS application in recent years, and it have many advantages, such as low leakage-current, low parasitic capacitances, low power and high speed.
In this thesis, SiGe/Si heterojunction internal photoemission infrared photodetector has been fabricated on SOI wafer. The infrared characteristics of the structure are measured by Fourier Transform Infrared (FTIR) spectrometer.
Chinese Abstract … i
English Abstract … ii
Acknowledgement … iii
Content … iv
Chapter1 : Introduction … 1
1.1 Motivation … 1
1.2 The effect of strain on SiGe alloy … 3
1.3 Relaxation … 5
1.4 Band gap of strain effect on SiGe alloy … 7
Reference … 11
Chapter2 : Background of SiGe/Si Heterojunction Internal Photoemission Infrared Photodetector … 13
2.1 Blackbody Radiation … 13
2.2 Atmospheric Infrared Absorption … 14
2.3 Infrared Detector … 15
2.4 Heterojunction Internal Photoemission Infrared Photodetector … 19
Reference … 22
Chapter3 : Fabrication of Device … 23
3.1 Sample structure … 23
3.2 Molecular Beam Epitaxial (MBE) Growth … 24
3.3 Process of Sample … 28
Reference … 34
Chapter4 : Measurement Principle and Experiment Setup … 35
4.1 FTIR Measurement … 35
4.2 Raman Measurement … 43
4.3 Current-voltage Measurement … 45
Reference … 47
Chapter5 : Results and Discussions … 48
5.1 FTIR Measurement … 48
5.2 Raman Measurement … 56
5.3 Current-voltage Measurement … 59
5.4 Conclusions … 62
Reference … 63
Chaprer1:
[1] SOLID STATE PHYSICS, edited by Neil W. Ashcroft and N. David Mermin (Saunders College Publishing, 1976)
[2] Introduction to Solid State Physics, edited by Charles Kittel (John Wiley & Sons Inc., 1996)
[3] J. M. Hartmann, B. Gallas, J. Zhang and J. J. Harris, “Gas-source molecular beam epitaxy of SiGe virtual substrates: II. Strain relaxation and surface morphology,” Semicond. Sci. Technol., 15, 370-377 (2000)
[4] Properties of Strained and Relaxed Silicon Germanium, edited by Erich Kasper (INSPEC/IEE, 1995)
[5] Matthews J. W. and Blakeslee A. E. “Defects in epitaxial multilayers: I. Misfit Dislocations,” Journal of Crystal Growth, 27, 118 (1974)
[6] Matthews J. W. and Blakeslee A. E. “Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers,” Journal of Crystal Growth, 32, 265 (1976)
[7] Houghton D. C. “Strain relaxation kinetics in Si1-xGex/Si heterostructures,” J. Appl. Phys., 70, 2136 (1991)
[8] Mooney P. M. “Strain relaxation and dislocations in SiGe/Si structures,” Mat. Sci. Eng., R17, 105 (1996)
[9] R.People, “Indirect band gap of coherently strained GexSi1-x bulk alloys on <001> silicon substrates,” Phys. Rev. B, 32, 1405 (1985)
[10] Chris G. Van de Walle and Richard M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B, 34, 5621-5634 (1986)
[11] L. Colombo, R. Resta, and S. Baroni, “Valence-band offsets at strained Si/Ge interfaces,” Phys. Rev. B, 34, 5572 (1991)
[12] E. T. Yu, E. T. Croke and T. C. McGill, “Measurement of the valence-band offset in strained Si/Ge (100) heterojunctions by x-ray photoelectron spectroscopy,” Appl. Phys. Lett., 56, 569 (1990)
[13] G. P. Schwartz, M. S. Hybertsen, J. Bevk, R. G. Nuzzo, J. P. Mannaerts, and G. J. Gualtieri, “Core-level photoemission measurements of valence-band offsets in highly strained heterojunctions: Si-Ge system,” Phys. Rev. B, 39, 1235 (1989)
[14] R. People and J. C. Bean, “Band alignments of coherently strained GexSi1–x/Si heterostructures on <001> GeySi1–y substrates,” Appl. Phys. Lett., 48, 538-540 (1986)
[15] M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Sil-xGex alloys on Sil-yGey substrates,” Phys. Rev. B, 48, 14276 (1993)
[16] J. F. Morar, P. E. Batson, and J. Tersoff, “Heterojunction band lineups in Si-Ge alloys using spatially resolved electron-energy-loss spectroscopy,” Phys. Rev. B, 47, 4107-4110 (1993)
Chapter2:
[1] Optical Processes In Semiconductors, edited by JACQUES I. Pankove (Dover Publications, Inc. New York, 1975)
[2] Infrared Technology, edited by A. R. Jha (John Wiley & Sons, Inc. New York, 2000)
[3] Selected Papers on Semiconductor Infrared Detectors, edited by Antoni Rogalski and Brian J. Thompson (Bellingham, Wash. :SPIE Optical Engineering Press, 1992)
[4] B. Aslan, R. Turan, H. C. Liu and J-M Baribeau, “Mechanisms of photocurrent generation in SiGe/Si HIP infrared photodetectors,” Semicond. Sci. Technol. 19, 399-403 (2004)
[5] F. D. Shepherd, Jr., V. E. Vickers, and A. C. Yang, “Schottky-barrier photodiode with a degenerate semiconductor active region,” United States Patent 3,603,847 (1971)
[6] T. L. Lin and J. Maserjian, “Novel p+-Si1-xGex/p-Si heterojunction infrared detectors fabricated by molecular beam epitaxy,” Appl. Phys. Lett., 57, 1422-1424 (1990)
[7] B-Y. Tsaur, C. K. Chen, and S. A. Marino, “Long-wavelength GeXSi1-X/Si heterojunction infrared detectors and 400×400-element imager arrays,” IEEE Electron Device Lett., 12, 293-296 (1991)
[8] R. People, J. C. Bean, D. V. Lang, A. M. Sergent, H. L. Stormer, K. W. Wecht, R. T. Lynch, and K. Baldwin, “Modulation doping in Ge1-XSiX/Si strained layer heterostructures,” Appl. Phys. Lett., 45, 1231-1233 (1984)
[9] T. L. Lin, A. Ksendzov,; S. M. Dejewski,; E. W. Jones, R. W. Fathaure, T. N. Krabach, J. Maserjian, “SiGe/Si Heterojunction Internal Photoemission Long-Wavelength Infrared Detectors Fabricated by Molecular Beam Epitaxy,” IEEE Transaction on Electron Devices, 38, 1141-1144 (1991)
Chapter3:
[1] VLSI製造技術,edited by 莊達人 (高立出版社, 2004)
[2] Semiconductor devices, physics and technology, edited by S. M. Sze (New York, Wiley, 1985)
Chapter4:
[1] GUIDE for infrared spectrosopy, edited by Bruker Optics (Bruker Optics)
[2] Introduction to step-scan FTIR, edited by T. J. Johnson and G. Zachmann (Bruker Optics)
[3] J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1-x layers,” J. Appl. Phys., 75, 8098 (1994)
[4] J. Groenen, R. Carles, S. Christiansen, M. Albrecht, W. Dorsch, H. P. Strunk, H. Wawra, and G. Wagner, “Phonons as probes in self-organised SiGe islands,” Appl. Phys. Lett., 71, 3856 (1997)
[5] R. Strong, D. W. Greve, P. Pellegrini, and M. Weeks, “GexSi1-x infrared detectors II. Carrier escape probability and detector performance,” J. Appl. Phys., 82, 5199 (1997)
[6]T. L. Lin, J. S. Park, S. D. Gunapala, E. W. Jones, and H. M. Del Castillo, “Photoresponse Model for Si1-xGex/Si Heterojunction Internal Photoemission Infrared Detector,” IEEE Electron Device Lett., 15, 103 (1994)
Chapter5:
[1] R. J. Collins and H. Y. Fan, “Infrared lattice absorption in ionic and homopolar crystals,” Phys. Rev., 93, 674-678 (1954)
[2] F. A. Johnson, “Lattice absorption bands in silicon,” Proc. Phys. Soc., 73, 265-272 (1959)
[3] 矽晶圓半導體材料技術, edited by 林明獻 (全華出版社, 2000)
[4] B. L. Sopori, “Measurement of high boron concentrations in silicon by infrared spectroscopy,” Appl. Phys. Lett. 47, 39-41 (1985)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top