跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林伯聰
研究生(外文):Po-Tsung Lin
論文名稱:並聯多級功率放大器及功率結合技術
論文名稱(外文):Parallel Multiple Stages Power Amplifier and Power Combining Technique
指導教授:劉致為
指導教授(外文):Chee-Wee Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:並聯多級功率放大器功率結合技術
外文關鍵詞:Parallel Multiple StagesPower AmplifierPower Combining Technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們介紹了各種不同類別的功率放大器以及數種功率放大器的效率增進技術。更進一步,本論文設計與製作了數個以金氧半與矽鍺製程製作且供無線通訊應用的功率放大器。以0.18微米金氧半製程製作的自我偏壓串聯功率放大器,達成了15.3 dB的線性增益、18.8 dBm的飽和功率、17.7 dBm的1dB壓縮點以及25.6 %的功率增加效率;以0.35微米矽鍺製作的並聯多功率級功率放大器,在模擬上高功率級有28.7 dB的線性增益、28.9 dBm的飽和功率、26.6 dBm的1dB壓縮點以及41 %的1dB壓縮點增加效率,而低功率級則有27.5 dB的線性增益、22.3 dBm的飽和功率、21.8 dBm的1dB壓縮點以及31.6 %的1dB壓縮點增加效率;同樣以0.35微米矽鍺製作的具功率結合器功率放大器,達成了14 dB的線性增益、28.5 dBm的飽和功率、27.9 dBm的1dB壓縮點以及22.6 %的1dB壓縮點增加效率。此外,在本論文中我們也說明了這些不同架構的功率放大器各自的設計概念、設計流程與使用印刷電路版的量測方式。
In this thesis, some different classifications and efficiency enhancement techniques of power amplifiers are introduced. Furthermore, some CMOS and SiGe power amplifiers used for wireless communication applications are designed and fabricated. For 0.18μm self-biased cascade CMOS power amplifier, it achieves 15.3 dB linear gain, 18.8 dBm Psat, 17.7 dBm P1dB, and 25.6 % PAE@P1dB; For 0.35μm parallel multiple power-stages SiGe power amplifier, in simulation, it achieves 28.7 dB linear gain, 28.9 dBm Psat, 26.6 dBm P1dB, and 41 % PAE@P1dB in high power stage, and 27.5 dB linear gain, 22.3 dBm Psat, 21.8 dBm P1dB, and 31.6 % PAE@P1dB in low power stage; For 0.35μm SiGe power amplifier with power combiner, it achieves 14 dB linear gain, 28.5 dBm Psat, 27.9 dBm P1dB, and 22.6 % PAE@P1dB. In addition, each design concepts and flows of these power amplifiers with different structures and the measurement method with PCB module are described in this thesis.
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Thesis Outline 3
Chapter 2 Classification of Power Amplifiers and Efficiency Enhancement Techniques 5
2.1 Introduction 5
2.2 Classification of Power Amplifiers 5
2.2.1 Linear Power Amplifiers 6
2.2.2 Non-Linear Power Amplifiers 8
2.2.2.1 Class D 8
2.2.2.2 Class E 10
2.2.2.3 Class F 11
2.3 PA Efficiency Enhancement Techniques 13
2.3.1 Doherty Amplifier 13
2.3.2 Chireix’s Outphasing Amplifier 16
2.3.3 Envelope Elimination and Restoration 17
2.3.4 Envelope Tracking 18
2.3.5 Multiple Power-Stage Power Amplifier 19
2.3.6 Power Combining 20
Chapter 3 2.4 GHz Self-Biased Cascode CMOS Power Amplifier 21
3.1 Introduction 21
3.2 Weaknesses of CMOS Technology 22
3.2.1 Low fmax 22
3.2.2 Low Breakdown Voltage 23
3.2.3 Low Substrate Resistivity 23
3.3 Theoretical Analysis and Circuit Design 24
3.3.1 Advantages of Self-Biased Cascode Topology 24
3.3.2 Other Circuit Blocks of Self-Biased Cascode CMOS PA 26
3.3.2.1 CMOS Transistors 26
3.3.2.2 Matching Circuits 27
3.3.2.3 λ/4 Transmission Line 28
3.3.3 Using Load-Line Theory to Optimize Biasing Point 28
3.3.4 Circuit Design Flow 31
3.4 Measurement 32
3.4.1 Measurement Method 32
3.4.2 Measurement Results 33
3.5 Discussion and Conclusion 35
Chapter 4 1.95 GHz SiGe Power Amplifier with Parallel Multiple Power Stages 36
4.1 Introduction 36
4.2 Theoretical Analysis and Circuit Design 36
4.2.1 Parallel Multiple Power-Stages Structure 37
4.2.2 Biasing Circuits with Temperature Compensation 39
4.2.3 Circuit Design Flow 40
4.3 Simulation and Measurement 40
4.3.1 Simulation Results 41
4.3.2 Measurement Results 43
4.4 Discussion and Conclusion 44
Chapter 5 1.95 GHz SiGe Power Amplifier with Power Combiner 46
5.1 Introduction 46
5.2 Advantages of Power Combining Technique with Lumped Component 46
5.2.1 Advantages of Power Combining Technique 47
5.2.1.1 The Loss of the Output Matching Circuit 47
5.2.1.2 The Limit of the Transistor Size 48
5.2.2 Advantages of Using Lumped Component 49
5.3 Theoretical Analysis and Circuit Design 49
5.3.1 Differential Power Combiner with Lumped Component 50
5.3.2 In-Phase Power Combiner with Lumped Component 52
5.3.3 Circuit Design Flow 52
5.4 Measurement 53
5.4.1 Measurement Method 54
5.4.2 Measurement Results 55
5.5 Discussion and Conclusion 58
Chapter 6 Summary and Future Work 59
6.1 Summary 59
6.2 Future Work 60
Reference 61
[1]T.S. Rappaport, “Wireless Communications Principles and Practice 2nd edition,” Prentice Hall, 2002.
[2]S.C. Cripps, “RF Power Amplifiers for Wireless Communications,” ARTECH HOUSE, 1999.
[3]F.H. Raab, et al., “RF and Microwave Power Amplifier and Transmitter Technologies — Part 2,” High Frequency Electronics, May 2003.
[4]N. Sokal and A. Sokal, “Class E, a New Class of High Efficiency Tuned Single-Ended Switching PAs,” IEEE Transactions on Power Electronics, vol. 9, pp. 290-308, May 1994.
[5]F.H. Raab, “Maximum Efficiency and Output of Class-F Power Amplifiers,” IEEE Transactions on Microwave Theory and Technique, vol. 49, pp. 1162-1166, June 2001.
[6]S.D. Kee, et al., “The Class-E/F Family of ZVS Switching Amplifiers,” IEEE Transactions on Microwave Theory and Technique, vol. 51, pp. 1677-1690, June 2003.
[7]F.H. Raab, et al., “RF and Microwave Power Amplifier and Transmitter Technologies — Part 1,” High Frequency Electronics, May 2003.
[8]W.H. Doherty, “A New High Efficiency Power Amplifier for Modulated Wave,” Proc. IRE, vol. 24, pp.1163-1182, Sept. 1936.
[9]H. Chireix, “High Power Outphasing Modulation,” Proc. IRE, pp. 1370-1392, Nov. 1935.
[10]L.R. Kahn, “Single Sideband Transmission by Envelope Elimination and Restoration,” Proc. IRE, pp. 803-806, July 1952.
[11]J. Staudinger, et al., “High Efficiency CDMA RF Power Amplifier Using Dynamic Envelope Tracking Technique,” IEEE MTT-S International Microwave Symposium, pp. 873-876, June 2000.
[12]D.R. Anderson and W.H. Cantrell, “High-Efficiency High-Level Modulator for Use in Dynamic Envelope Tracking CDMA RF Power Amplifier,” IEEE MTT-S International Microwave Symposium, pp. 1509-1512, June 2001.
[13]J. Deng, et al., “A High-Efficiency SiGe BiCMOS WCDMA Power Amplifier with Dynamic Current Biasing for Improved Average Efficiency,” IEEE Radio Frequency Integrated Circuit Symposium, pp. 361-364, June 2004.
[14]N. Srirattana, et al., “Linear RF CMOS Power Amplifier with Improved Efficiency and Linearity in Wide Power Levels,” IEEE, 2005.
[15]I. Aoki, et al., “Distributed Active Transformer — A New Power-Combining and Impedance-Transformation Technique,” IEEE Transaction on Microwave Theory and Techniques, vol. 50, pp. 316-331, Jan. 2002.
[16]Y. Tsividis, “Operation and Modeling of the MOS Transistor 2nd edition,” Boston, MA: McGrawHill, 1999.
[17]R.S. Narayanaswami, “RF CMOS Class C Power Amplifiers for Wireless Communications,” PhD thesis, U.C. Berkeley, Fall 2001.
[18]T. Sowlati, “A 2.4-GHz 0.18-μm CMOS Self-Biased Cascode Power Amplifier,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 1318-1324, Aug. 2003.
[19]G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design 2nd edition,” Prentice Hall, 1997.
[20]J. Staudinger, “Applying Switched Gain Stage Concepts to Improve Efficiency and Linearity for Mobile CDMA Power Application,” Microwave Journal, vol. 43, pp. 152-162, Sept. 2000.
[21]W.C. Hua, “High-Linearity and Temperature-Insensitive 2.4 GHz SiGe Power Amplifier with Dynamic-Bias Control,” IEEE Radio Frequency Integrated Circuit Symposium, summer 2005.
[22]P. Reynaert and M. Steyaert, “A Fully Integrated CMOS RF Power Amplifier with Parallel Power Combining and Power Control,” IEEE ASSCC, pp.137-140, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top