跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林偉程
研究生(外文):Wei-cheng Lin
論文名稱:低伏導管式類比數位轉換器和採用可適性濾波技術之數位校準方法
論文名稱(外文):Low-voltage Pipelined ADC and A Calibration Method Using Adaptive Filtering Technique
指導教授:呂學士
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:91
中文關鍵詞:導管式類比數位轉換器校準
外文關鍵詞:pipelinecalibrationadc
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1021
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In recent years, with the rapid growth of information the speed of data rate in communication system needs to be improved. Therefore different architectures of transceiver have been presented for the solution and as the CMOS technology is evolving, those impractical method before now become realizable. In modern trend of SOC, most of the transceiver will adopt a high-speed and high dynamic range ADC in its system block. For example, in the RF system, more emphases are made on the integration and adaptability. For monolithic integration, a homodyne receiver is more suitable. By its feature of channel selection in base-band, the wanted signal channel and detected signal sensitivity can be adapted by using the digital filtering techniques after the zero-IF signal digitized by the ADC. Pipelined ADC is the most suitable architecture since it features of high speed and can have high dynamic range. Besides, with bootstrapping techniques and power optimization, the low voltage operation and low power consumption can be demonstrated.
This thesis will show how to implement a 10-bit pipelined ADC operating under 2.5V supply voltage by using standard TSMC 0.35um CMOS technology and the measurement result. Because the threshold voltage of this technology is not that of the low-threshold voltage process, the design of OPAMP should be careful. The reason is that the NMOS and PMOS in cascade topology are operating near the boundary of saturation which is close to triode region. This may make the OPAMP not have gain high enough. To solve this problem a digital calibration method will be presented. It’s just like an adaptive equalizer to calibrate the nonlinear transfer curve of ADC’s input and output that resulted from non-ideal stage gain. With this method, a ADC suffered from distortion can be compensated so that its linearity will become better.
.
Content List
Acknowledgment-------------------------------------------------------------------------------I
Abstract------------------------------------------------------------------------------------------II
Content List------------------------------------------------------------------------------------IV
List of Figures--------------------------------------------------------------------------------VII
List of Table-----------------------------------------------------------------------------------XII
Chapter 1 Introduction------------------------------------------------------------------------1
􀂄1-1.Motivation---------------------------------------------------------------------------1
􀂄1-2.The Role of ADC and the goal of this design---------------------------------1
Chapter 2 Basic Concept for ADC----------------------------------------------------------4
􀂄2-1 Definition of ADC & Quantization Concept---------------------------------4
􀂄2-2. Performance evaluation parameters------------------------------------------5
􀂄2-2-1.Resolution------------------------------------------------------------------ 6
􀂄2-2-2. Nonlinearity----------------------------------------------------------------6
􀂄2-2-3. Signal-to-Noise Ratio----------------------------------------------------8
􀂄2-3. Review of Different ADC Architectures-------------------------------------11
􀂄2-3-1. Flash ADC----------------------------------------------------------------11
􀂄2-3-2. SAR ADC ----------------------------------------------------------------12
􀂄2-3-3. Delta-sigma ADC--------------------------------------------------------14
􀂄2-3-4. two-step ADC------------------------------------------------------------16
􀂄2-3-6. Comparison--------------------------------------------------------------16
Chapter 3 Architecture of Pipelined ADC------------------------------------------------18
􀂄3-1.Basic pipeline structures--------------------------------------------------------18
􀂄3-2.1.5bit pipeline ADC architecture----------------------------------------------21
􀂄3-3.Matlab simulink model----------------------------------------------------------25
Chapter 4 Circuit Design for Pipelined ADC--------------------------------------------35
􀂄4-1.OPAMP design--------------------------------------------------------------------35
􀂄4-1-1.OPAMP’s design flow---------------------------------------------------35
􀂄4-1-2.Requirement calculation-----------------------------------------------36
􀂄4-1-3.OPAMP topology decision---------------------------------------------40
􀂄4-1-4.Bias circuit design-------------------------------------------------------44
􀂄4-1-5.OPAMP’s tuning---------------------------------------------------------46
􀂄4-2.Sample and Hold circuit--------------------------------------------------------51
􀂄4-2-1.Bottom-plate-sampler--------------------------------------------------51
􀂄4-2-2.MDAC circuit design---------------------------------------------------55
􀂄4-3.Comparator design--------------------------------------------------------------56
􀂄4-4.The logic control in MDAC----------------------------------------------------59
􀂄4-5.The clock generator and buffer trees----------------------------------------59
􀂄4-6.The digital error correction block--------------------------------------------60
􀂄4-7.Whole circuit simulation-------------------------------------------------------61
Chapter 5 Measurement--------------------------------------------------------------------63
􀂄5-1.Layout-----------------------------------------------------------------------------63
􀂄5-1-1.power domains ----------------------------------------------------------63
􀂄5-1-2.Differential structure----------------------------------------------------64
􀂄5-1-3.Inductance consideration in bonding wires------------------------64
􀂄5-1-4.Body contact ring--------------------------------------------------------65
􀂄5-2.Measurement----------------------------------------------------------------------66
􀂄5-2-1.Measurement Environment Setup------------------------------------66
􀂄5-2-2.DNL & INL---------------------------------------------------------------72
􀂄5-2-3.Dynamic testing----------------------------------------------------------74
􀂄5-2-4.Summary------------------------------------------------------------------74
Chapter 6 Calibration Method-------------------------------------------------------------77
􀂄6-1.Concept of Adaptive Calibration----------------------------------------------77
􀂄6-2.Matlab simulink model and implementation method---------------------81
Chapter 7 Conclusion-------------------------------------------------------------------------87
􀂄7-1.Conclusion-------------------------------------------------------------------------87
Reference-------------------------------------------------------------------------------------- -89
Reference
[1] SeongHwan Cho; Ock, S.; Sang-Hoon Lee; Joon-Suk Lee; “A Low Power
Pipelined Analog-to-Digital Converter using Series Sampling Capacitors”,
Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on
23-26 May 2005 Page(s):6178 – 618
[2] Miyazaki, D.; Furuta, M.; Kawahito, S.; “A 75mW 10bit 120MSample/s parallel
pipeline ADC”, Solid-State Circuits Conference, 2003. ESSCIRC ''03. Proceedings of the 29th European 16-18 Sept. 2003 Page(s):719 - 722
Digital Object Identifier 10.1109/ESSCIRC.2003.1257236
[3]Byung-Moo Min; Kim, P.; Bowman, F.W., III; Boisvert, D.M.; Aude, A.J.; “A
69-mW 10-bit 80-MSample/s Pipelined CMOS ADC”, Solid-State Circuits, IEEE Journal of Volume 38, Issue 12, Dec 2003 Page(s):2031 - 2039
Digital Object Identifier 10.1109/JSSC.2003.819166
[4]Timothy M. Hancock, Scott M. Pernia, and Adam C. Zeeb, “A Digitally Corrected
1.5-bit-per-stage Low-Power 80 MSs 10-Bit Pipelined ADC” , University of Michigan,2002.
[5]Qi Yu; Xiang-zhan Wang; Ning Ning; Lin Tang; Hong-Bin Li; Mo-hua Yang; “A
10-bit 100MSPS 0.35 /spl mu/m Si CMOS pipeline ADC”, Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on Volume 2, 18-21 Oct. 2004 Page(s):1523 - 1525 vol.2 Digital Object Identifier 10.1109/ICSICT.2004.1436902
[6]劉憲駿,“100MHz 10位元導管式類比數位轉換器之設計”,MS Thesis,
NCTU, 2003, June
[7]呂宗憲,“適用於IEEE802.11a之管流式類比數位轉換器設計”,MS Thesis,中華
大學, 2004, July
[8]Kelvin Boo-Huat Khoo, “PROGRAMMABLE, HIGH-DYNAMIC RANGE SIGMA-DELTA A/D CONVERTERS FOR MULTISTANDARD, FULLY-INTEGRATED RF RECEIVERS”, University of California at Berkeley,1998
[9]黎慧玉 , “應用數位誤差平均技術之導管式類比數位轉換器”,2002, June.
[10]Behead Razavi, “Principles of Data Conversion System Design,” IEEE PRESS, 1995.
[11]Behead Razavi, “RF Microelectronics,” Prentice Hall, 1998
[12]Le, H.P.; Zayegh, A.; Singh, J., “A 12-bit high performance low cost pipeline ADC,” Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 10th IEEE International Conference on Volume 2, 14-17 Dec. 2003 Page(s):471 - 474 Vol.2 Digital Object Identifier 10.1109/ICECS.2003.1301824
[13] Waltari, M.; Sumanen, L.; Korhonen, T.; Halonen, K., “A self-calibrated pipeline ADC with 200MHz IF-sampling frontend,” Solid-State Circuits Conference, 2002. Digest of Technical Papers. ISSCC. 2002 IEEE International Volume 1, 3-7 Feb. 2002 Page(s):314 - 469 vol.1 Digital Object Identifier 10.1109/ISSCC.2002.993058
[14] Kenneth C. Dyer, Daihong Fu,Stephen H. Lewis, and Paul J. Hurst, “An Analog
Background Calibration Technique for Time-Interleaved Analog-to-Digital
Converters, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 12, DECEMBER 1998
[15]鄭光偉, “A 1.0V, 10-bit CMOS Pipeline Anolog-to-Digital Converter,” National Taiwan University MS. Thesis, June 2002.
[16]黃善君, “The Design and Realization of Digital Calibration in 10-bit 10 MSPS Pipeline ADC,” National Taiwan University MS. Thesis, Jan 2001.
[17]陳麒安, “ADC for wireless Biotelemetry System,” National Taiwan University MS. Thesis, Jan 2005.
[18]David William Cline, “Noise, Speed, and Power Trade-offs in Pipelined Analog
to Digital Converters,” PHD Thesis, University of California at Berkeley
[19]Lauri Sumanen, “Pipeline Analog-to-Digital Converters for Wide-Band Wireless
Communications,” PHD Dissertation, Helsinki University of Technology, 2002
[20]Yun Chiu, “An Adaptive Filtering Platform for Digitally Calibrated A/D
Conversion,” BWRC Winter Retreat 2004, University of California, Berkeley,
Jan. 12, 2004
[21]Thomas Byunghak Cho; Paul R. Gray, “A 10 b, 20 MS/s, 35mW Pipeline AD
Converter,” IEEE JSSC vol.30, NO.3, March 1995
[22] Bilhan, E.; Estrada-Gutierrez, P.C.; Valero-Lopez, A.Y.; Maloberti, F.,
“Behavioral model of pipeline ADC by using SIMULINK(R)” Mixed-Signal
Design, 2001. SSMSD. 2001 Southwest Symposium on 25-27 Feb. 2001
Page(s):147 - 151 Digital Object Identifier 10.1109/SSMSD.2001.914955
[23] Kuyel, T., ‘Linearity testing issues of analog to digital converters,” Test
Conference, 1999. Proceedings. International 28-30 Sept. 1999 Page(s):747 - 756
Digital Object Identifier 10.1109/TEST.1999.805804
[24]Degang Chen; Zhongjun Yu; Geiger, R., “An Adaptive, Truly Background
Calibration Method for High Speed Pipeline ADC Design,”Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 Page(s):6190 - 6193 Digital Object Identifier 10.1109/ISCAS.2005.1466054
[25] Yu Lin; Katyal, V.; Geiger, R.; Schlarmann, M., “kT/C Constrained
Optimization of Power in Pipeline ADCs,” Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 Page(s):1968 - 1971
Digital Object Identifier 10.1109/ISCAS.2005.1465000
[26] Gines, A.J.; Peralias, E.J.; Rueda, A., “Full Calibration Digital Techniques for
Pipeline ADCs” Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 Page(s):1976 - 1979 Digital Object Identifier 10.1109/ISCAS.2005.1465002
[27] Goes, J.; Vital, J.C.; Alves, L.; Ferreira, N.; Ventura, P.; Bach, E.; Franca, J.E.;
Koch, R., “A low-power 14-b 5 MS/s CMOS pipeline ADC with background analog self-calibration” Solid-State Circuits Conference, 2000. ESSCIRC ''00. Proceedings of the 26th European 19-21 Sept. 2000 Page(s):172 – 175
[28] Yun Chiu, “High-Performance Pipeline A/D Converter Design in
Deep-Submicron CMOS,” PHD dissertation, UNIVERSITY of CALIFORNIA, BERKELEY, Fall 2004
[29]陳逸民, “Digital Audio/Video Broadcasting-Standard & Receiver Signal
Processing,” 中央大學 2005/4/13
[30] Behead Razavi, “Design of Analog CMOS Integrated Circuits,” McGRAW-HILL
[31] www.maxim-ic.com
[32]David Smalley, “Equalization Concepts:A Tutorial,” Atlanta Regional
Technology Center, October 1994
[33]David Johns, “Equalization,” Course slides,University of Toronto,1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王國慧、陳天文 (2004)。優秀跳遠選手專項體能與運動表現之相關。運動生理暨體能學報,1,164-171。
2. 王人生 (1992)。談籃球運動不同方式投籃之力學分析。臺灣體育,63,19-23。
3. 王人生 (1992)。談籃球運動不同方式投籃之力學分析。臺灣體育,63,19-23。
4. 王人生 (1992)。談籃球運動不同方式投籃之力學分析。臺灣體育,63,19-23。
5. 王國慧、陳天文 (2004)。優秀跳遠選手專項體能與運動表現之相關。運動生理暨體能學報,1,164-171。
6. 王國慧、陳天文 (2004)。優秀跳遠選手專項體能與運動表現之相關。運動生理暨體能學報,1,164-171。
7. 李昭慶、王儀祥、黃谷臣 (2000)。非最大運動前後心跳率化與耐力運動表現的關係研究。中華體育,52,98-105。
8. 李昭慶、王儀祥、黃谷臣 (2000)。非最大運動前後心跳率化與耐力運動表現的關係研究。中華體育,52,98-105。
9. 李昭慶、王儀祥、黃谷臣 (2000)。非最大運動前後心跳率化與耐力運動表現的關係研究。中華體育,52,98-105。
10. 林文郎、何忠鋒 (1998)。血乳酸與運動恢復之探討。大專體育,40,115-124。
11. 林文郎、何忠鋒 (1998)。血乳酸與運動恢復之探討。大專體育,40,115-124。
12. 林文郎、何忠鋒 (1998)。血乳酸與運動恢復之探討。大專體育,40,115-124。
13. 張嘉澤、詹元碩 (2005)。運動能力之診斷與訓練調整。國民體育季刊,34(3),44-52。
14. 張嘉澤、詹元碩 (2005)。運動能力之診斷與訓練調整。國民體育季刊,34(3),44-52。
15. 張嘉澤、詹元碩 (2005)。運動能力之診斷與訓練調整。國民體育季刊,34(3),44-52。