跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾明祥
研究生(外文):Ming-xiang Zeng
論文名稱:高速下載封包擷取系統中的適應性連結調整演算法
論文名稱(外文):Adaptive Link Adaptation Algorithm in High Speed Downlink Packet Access (HSDPA) System
指導教授:林宗男林宗男引用關係
指導教授(外文):Tsungnan Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:102
中文關鍵詞:高速下載封包擷取適應性調變編碼連結調整類神經網路
外文關鍵詞:HSDPAAMCLink AdaptationNeural Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在高速下載封包擷取系統中提出了多項相對於全球行動通訊系統的技術改善來提升服務效能 , 而它之所以能提升封包最大傳輸率達到10Mbps的主要原因在於高速下載封包擷取系統使用的連結調整是適應性調變編碼 , 適應性調變編碼的功能在於節點B隨著通道情況的變化去選擇不同的調變與編碼組合來傳送封包 , 如果傳送的封包使用了正確的調變與編碼組合 , 則不僅生產量會提升、封包錯誤率會減少 , 還有延遲問題亦會降低 , 所以調變與編碼組合界線值的選取是一項影響其效能的重要因素 。 最佳化調變與編碼組合界線值的決定主要取決於目前手機用戶的無線通道環境 , 但因為無線通道環境是隨著時間改變的 , 所以我們並沒有辦法事先得知在哪種通道環境下的最佳化調變與編碼組合界線值 。 倘若今天手機用戶處於較差的通道環境中 , 但卻使用了在較好通道環境中的最佳化調變與編碼組合界線值 , 則它的生產量效能就會降低 , 反之亦然 。 在這篇論文裡 , 我們提出了一個利用背景查覺學習基準的方法來解決這個問題 , 背景查覺的主要概念在於線上的學習通道環境的情況後做適應性的調整調變與編碼組合界線值來達到最佳化 , 而我們做適應性連結調整的目標在於達到整體生產量的最大值 。 在我們的提出的作法中 , 首先節點B會先收集從手機用戶回傳的通道環境訊息及封包接收情況的資訊後 , 再利用類神經網路的概念去學習訊號雜訊比、調變與編碼組合界線值之間的複雜非線性封閉形式 , 在獲得這個非線性的封閉型式後 , 我們利用它來產生在某段訊號雜訊比區間內的累加生產量 , 再來我們同樣利用類神經網路的概念去學習累加生產量和調變與編碼組合界線值之間的複雜非線性封閉型式 , 而在獲得這個非線性封閉型式後 , 我們可以根據累加生產量跟未調整前的調變與編碼組合界線值之間的梯度關係來做適應性的調整調變與編碼組合界線值達到最佳化的值 。 這篇論文的貢獻在於我們提出了一個在隨著時間改變的通道環境中做適應性的調整調變與編碼組合界線值達到最佳化值的方法 , 進而達到生產量的最大值 。 模擬的結果證實了我們所提出的方法可以處理隨著時間改變的通道環境所造成的問題 , 並且提昇了生產量 。
In HSDPA system, a set of enhanced technique have been proposed to improve the service performance in proportion to the UMTS (Universal
Mobile Telecommunication System), and the primary reason that HSDPA could improve the peak rate of packet transmission up to 10Mbps is that the HSDPA utilize the AMC (Adaptive Modulation and Coding) as its link adaptation. The function of AMC is that Node B selects the variable MCSs (Modulation and Coding Schemes) to transmit the packet according to the changed channel conditions, if the packet transmits with the correct MCS then it will come out with a consequence that the throughput will be upgraded and the packet error rate and the delay requirement will be degraded, so the threshold of the MCSs is one of the most important factors that would affect the performance in HSDPA system. The optimal threshold depends on the user’s wireless channel environments. However, the channel condition is time-varying and it is difficult to decide optimal threshold in advance. If the user is in the worse channel condition but utilizes the thresholds suited to the better channel condition, then its throughput will be degraded, vice versa. In this thesis, we tackle this problem by a context-aware learning-based optimization approach. A context-aware framework is designed to learn the channel conditions on-line and optimize the threshold adaptively with the goal to maximize the overall throughput. In our approach, first, the node B collects the knowledge of the channel conditions and the information of the packet successful received or not those are feedback from users and uses these obtained knowledge and the capability of neural networks to learn the complex nonlinear function among the throughput, the threshold and the SNR (signal to noise rations), after acquiring the complex nonlinear function, we take advantage of it to get the aggregated throughput in certain SNR region. Then we use the capability of the neural network again to learn the complex nonlinear function between the aggregated throughput and the threshold and adjust the threshold adaptively to reach an optimal value according to the gradient which is derived from the aggregated throughput and the threshold. The contribution of this thesis is that we propose an approach that is applicable to the real situations to adaptively regulate the threshold to reach the optimal value and maximize the overall throughputs. The simulation results show that our approach can deal with the time-varying wireless channel conditions and improve the throughputs.
摘要..........................................................................................................Ⅰ
Abstract.....................................................................................................Ⅲ
致謝..........................................................................................................Ⅴ
Acknowledge.............................................................................................Ⅵ
1. 簡介.......................................................................................................1
1.1 行動通訊發展的演變.................................................................................1
1.2 寬頻分碼多工存取(W-CDMA)................................................................4
1.2.1 第三代行動通訊的簡介......................................................................4
1.2.1.1 第三代行動通訊頻譜的配置.....................................................4
1.2.1.2 第三代行動通訊的空氣媒介...................................................6
1.2.2 全球行動通訊系統(UMTS) ..............................................................6
1.2.3 全球行動通訊系統的架構.................................................................8
1.2.3.1 使用者裝置(UE)............................................................................8
1.2.3.2 全球行動通訊系統地面無線存取網路(UTRAN)...............8
1.2.3.3 核心網路(Core Network).............................................................9
1.2.3.4 外部網路(External Network)...................................................10
1.2.3.5 介面(Interface)..............................................................................11
1.2.4 全球行動通訊系統協定架構..........................................................12
1.2.4.1無線電資源控制協定(RRC).....................................................12
1.2.4.2封包資料整合協定(PDCP)........................................................12
1.2.4.3 廣播與多重傳送控制協定(BMC)..........................................13
1.2.4.4 無線電連結控制協定(RLC)....................................................13
1.2.4.5 媒體存取控制協定(MAC).......................................................13
1.2.4.6 實體層(PHY)................................................................................14
1.2.4.7邏輯、傳輸與實體通道................................................................15
1.2.5 全球行動通訊系統的缺點...............................................................17
1.3 高速下載封包擷取(HSDPA)..................................................................19
1.3.1 新的傳輸通道......................................................................................19
1.3.1.1 高速下載共享通道(HS-DSCH)..............................................20
1.3.1.2 高速共享控制通道(HS-SCCH)..............................................22
1.3.1.3 上傳專有實體控制通道(Uplink DPCCH)...........................23
1.3.2 高速下載封包擷取協定架構..........................................................24
1.3.3 適應性調變編碼(AMC)....................................................................25
1.3.4 混合自動重複要求(HARQ)............................................................28
1.3.5 快速排序(FS).......................................................................................32
1.3.6 快速細胞選取(FCS)..........................................................................36
1.4 論文研究的目的.........................................................................................38
2. 適應性連結調整最佳化的問題與相關研究...........................................39
2.1 適應性調變編碼可能發生的問題........................................................39
2.2 相關研究.......................................................................................................43
2.2.1 界線調整演算法(TAA)….................................................................43
2.2.2 在界線值附近區間內 作界線值調整演算法................46
3. 提出的研究........................................................................................................48
3.1 成本報酬方式.............................................................................................48
3.2 類神經網路與倒傳遞演算法.................................................................53
3.2.1 類神經網路架構.................................................................................53
3.2.2 倒傳遞演算法......................................................................................55
3.3 提出的架構..................................................................................................61
3.4 實用性的考量.............................................................................................67
4. 模擬結果............................................................................................................69
4.1 初始界線值的調整....................................................................................69
4.2 在改變的通道環境中做適應性的界線值調整.................................84
4.3 提出的方法的生產量效能.....................................................................90
5. 結論......................................................................................................................98
參考文獻.................................................................................................................. 99
[ 1 ] Theodore S. Rappaport, “Wireless Communications”.
[ 2 ] 3GPP homepage, “http://www.3gpp.org/”.
[ 3 ] 3GPP2 homepage, “http://www.3gpp2.org/”.
[ 4 ] Harri Holma, Antti Toskala, “WCDMA FOR UMTS, Radio access for third generation mobile communications”, 3nd Edition, John Wiley & Sons. 2004.
[ 5 ] Y.-B. Lin and I. Chlamtac, “Wireless and Mobile Network
Architectures”, John Wiley & Sons. 2002.
[ 6 ] ITU homepage , “http://www.itu.int/home/index.html”.
[ 7 ] 3GPP TS 25.303 UE Functions and Interlayer Procedures in
Connected Mode.
[ 8 ] 3GPP TS 25.401 UTRAN overall description.
[ 9 ] 3GPP TS 25.425 UTRAN Iur interface user plane protocols for
Common Transport Channel data streams.
[ 10 ] 3GPP 25.877 High Speed Downlink Packet Access (HSDPA) –
Iub/Iur Protocol Aspects.
[ 11 ] 3GPP TS 25.301 Radio Interface Protocol Architecture .
[ 12 ] 3GPP TS 25.331 RRC Protocol Specification .
[ 13 ] 3GPP TS 25.323 PDCP Protocol Specification .
[ 14 ] 3GPP TS 25.324 Broadcast/Multicast Control Protocol (BMC)
Specification .
[ 15 ] 3GPP TS 25.322 RLC Protocol Specification .
[ 16 ] 3GPP TS 25.321 MAC Protocol Specification .
[ 17 ] 3GPP TS 25.201 Physical layer-general description
[ 18 ] 3GPP TS 25.211 Physical channels and mapping of transport
channels onto physical channels (TDD).
[ 19 ] 3GPP TS 25.308 High Speed Downlink Packet Access (HSDPA) ;
Overall Description.
[ 20 ] Ryan Caldwell, Alagan Anpalagan, “HSDPA: An Overview”, IEEE
Canadian Review Spring 2004 22-24.
[ 21 ] 3GPP 25.858 Physical layer aspects of UTRA High Speed
Downlink Packet Access.
[ 22 ] Mainak Chatterjee, Giridhar D. Mandyam and Sajal K. Das, “Fast
ARQ in High Speed Downlink Packet Access for WCDMA
Systems”, Proc. Of European Wireless. February 2002. pp451-457.
[ 23 ] Ericsson, “Performance Comparison of Chase Combining and
Incremental Redundancy for HSDPA”, 3GPP TSGR1#17(00)1428.
[ 24 ] Troels E. Kolding, Frank Frederiksen, and Preben E. Mogensen,
“Performance Aspects of WCDMA Systems with High Speed
Downlink Packet Access (HSDPA)”, Vehicular Technology
Conference 2002-Fall IEEE 56th, Volume 1, 24-28.
[ 25 ] Wha Sook Jeon, Dong Geun Jeong, Bonghoe Kim, “Packet
Scheduler for Mobile Internet Services Using High Speed
Downlink Packet Access”, IEEE Transactions on wireless
communication, Volume 3, September 2004 page(s) 1789-1801.
[ 26 ] 3GPP TR 25.950 Technical Specification Group Radio Access
Network, UTRA High Speed Downlink Packet Access (Release 4).
[ 27 ] Phone Lin, Yi-Bing Lin, Imrich Chlamtac, “Overflow Control for
UMTS High Speed Downlink Packet Access”, Wireless
communications, IEEE Transactions on, Volume 3, Issue2, March
2004 page(s): 524-532.
[ 28 ] Jinsock Lee, Rob Arnott, Kojiro Hamabe, Nahoko Takano,
“Adaptive modulation switching level control in High Speed
Downlink Packet Access Transmission”, Proc. Third International
Conference on 3G Mobile Communication Technologies, May
2002, pp. 156-159.
[ 29 ] Michiharu Nadamura, Yassin Awad, Sunil Vadgama, “Adaptive
Control of Link Adaptation for High Speed Downlink Packet
Access (HSDPA) in W-CDMA”, Proc. Thr 5th International
Symposium on Wireless Personal Multimedia Communications,
Oct. 2002, pp.382-386.
[ 30 ] Li-Wei Fang, “Adaptive Throughput Maximization for Adaptive
Modulation and Coding in IEEE 802.16”, Graduate Institute of
Communication Engineering National Taiwan University.
[ 31 ] H.-J.Su and T. Lin, “Adaptive Throughput Maximization for
Adaptive Modulation and Coding Systems”, IEEE Asia-Pacific
Conference on Communications, pp. 406-410,2005.
[ 32 ] G. Holland, N. Vaidya, and P. Bahl. “A rate-adaptive MAC Protocol
for wireless networks”, In ACM MOBICOM’01, Rome, Italy, July
2001.
[ 33 ] Zhengrong Ji, Yi Yang, Junlan Zhou, Mineo Takai, and Rajive
Bagrodia, ”Exploiting Medium Access Diversity in Rate Adaptive
Wireless LANs”, In ACM MOBICOM’04, Philadelphia,
Pennsylvania, USA, Sept. 2004.
[ 34 ] Shyamal Ramachandran, “Link Adaptation Algorithm and Metric
for IEEE Standard 802.16”, Faculty of the Virginia Polytechnic
Institute and State University.
[ 35 ] S. Haykin, “Neural Networks – A Comprehensive Foundation”,
second edition, Prentice-Hall, Inc. 1999, pp.156-175.
[ 36 ] Tejas M. Bhatt, Dennis McCain, “Matlab as a Development
Environment for FPGA Design”, DAC 2005, Anaheim, California,
USA. ACM page(s) : 607-610.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top