跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭佳尚
研究生(外文):Chia-Shang Zheng
論文名稱:共面波導饋入超寬頻領結形槽孔天線
論文名稱(外文):Coplanar Waveguide Fed Bowtie Slot Antennas for Ultra-Wideband Applications
指導教授:許博文許博文引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:超寬頻領結形槽孔天線
外文關鍵詞:UWBbowtieslot antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,超寬頻技術經過了蓬勃的發展,已經變成了短距離、高速度無線通訊領域很好的選擇。在2002年,美國聯邦通訊委員會(FCC)制定了超寬頻系統的頻帶為3.1 GHz到 10.6 GHz,並規範在商業上的使用。為了要有很寬的頻寬以及很低的功率,超寬頻系統使用的訊號為極短的脈衝波。由於容易出現訊號失真的現象,在設計這種系統的天線時,比設計其他窄頻天線,更具有挑戰性。
在這篇論文中,我們由一種稱為自我互補的結構來設計一個共面波導饋入的領結形開槽天線。由於自我互補結構的特性,天線的阻抗頻寬非常寬,但是此種天線的真正操作頻寬卻被天線的輻射模型在高頻時的失真給限制,因此我們稍微修改了結構來改善此情形。為了避免跟現有的無線區域網路系統頻帶重疊而產生干擾,我們在所設計的天線上增加了一個開槽而產生了有帶拒特性的超寬頻天線。我們展示了包括頻域與時域的結果,並且對此做了一些討論。
Ultra-wideband (UWB) technology has experienced a blooming growth in recent years and becomes an attractive candidate for short-range high-speed indoor data communications. In 2002, the U.S. Federal Communications Commission (FCC) authorized the commercial deployment of UWB technology, and officially allocated the spectrum from 3.1 to 10.6 GHz for unlicensed UWB communication applications. To possess ultra-wide bandwidth and lower power, the UWB system transmits and receives extremely short pulses. It is quite a challenge to design an antenna for the UWB system, because antennas in the UWB system tend to introduce unpleasant signal distortion and degradation.
In this dissertation, we design a novel coplanar waveguide-fed bowtie slot antenna based on the self-complementary structure. Due to the property of self- complementary structure, the antenna possesses very wide impedance bandwidth. However, the actual operating bandwidth is limited by the distortion of radiation patterns as frequency increases. A modification is made to improve the radiation patterns. In order to prevent the unwanted interferences with the incumbent wireless local area network (WLAN), an additional slot is added to reject the overlapping band. Both the frequency and time domain results are shown and discussed.
摘要 …………………………………………………………………i
Abstract ……………………………………………………………..ii
Contents …………………………………………………………….iii
List of Figures……………………………………………………….v
Chapter 1 Introduction ……………………………….…………... 1
1.1 Motivation …………………………..………………….. 1
1.2 Literature Survey …………………..….…………………3
1.3 Chapter Outlines …………………….……………..…….4
Chapter 2 Concepts …………………….……….………………….7
2.1 Self-Complementary Structures …….……………………7
2.2 Coplanar Waveguide …………………..………………….9
2.3 Dimensionless Normalized Antenna Transfer Function….10
Chapter 3 CPW-fed bowtie slot antenna ……………………….….19
3.1 Model of the antenna …………………….……………….20
3.2 Original bowtie slot antenna ……………………….……..21
3.3 Modified bowtie slot antenna ……………………….…….22
3.4 Results of the modified bowtie slot antenna…………….…23
3.5 Summary …………………….…………………………….24
Chapter 4 CPW-fed bowtie slot antenna with band-rejected characteristic
4.1 Configuration…………………….…………………………41
4.2 Results…………………….…………………..……………42
4.3 Parameters study…………………….…..…………………43
4.4 Summary…………………….……………..………………43
Chapter 5 Conclusion…………………….…………..….…………...55
Reference …………………….……………………..….……………..57
[1] G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave, vol. 4, pp. 36-47, June 2003.
[2] D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag., vol. 41, pp. 66-74, July 2003.
[3] D. G. Leeper, “Ultrawideband – the next step in short-rangewireless,” in IEEE 2003 Radio Freq. Integrated Circuits Symp. Dig., pp. 493-496, June 2003.
[4] K. Siwiak, P. Withington and S. Phelan, “Ultra-wide band radio: the emergence of an important new technology,” in Proc. 2001 IEEE Veh. Technol. Conf., vol. 2, pp. 1169-1172, May 2001.
[5] E. Jonietz, “Ultrawideband Squeezes In”, MIT Tech. Rev. Sep 2002; http://www.technologyreview.com/read_article.aspx?id=12934
[6] Federal Communications Commission, First report and order, revision of part 15 of the commission’s rule regarding ultra wideband transmission systems, FCC 02-48, April 22, 2002.
[7] B. Scheers, M. Piette and A. Vander Vorst, “The detection of AP mines using UWB GPR,” in Proc. 2nd Int. Conf. on the Detection of Abandoned Land Mines, pp. 50-54, Oct. 1998.
[8] D. T. McGrath and C. E. Baum, “Scanning and impedance properties of TEM horn arrays for transient radiation,” IEEE Trans. Antenna Propagation, vol. 47, pp. 469 -473, March 1999.
[9] W. F. MaNaul, J. Glabe and B. Welge, “A low profile antenna for ultra-wide band applications,” in IEEE AP-S Int. Symp. Dig., vol. 3, pp. 476-479, June 2002.

[10] J. D. S. Langley, P. S. Hall and P. Newham, “Novel ultrawide-bandwidth Vivaldi antenna with low crosspolarisation,” Electron Lett. vol. 29, pp. 2004-2005, Nov. 1993
[11] V. Mikhnev and P. Vainikainen, “Wideband tapered-slot antenna with corrugated edges for GPR applications,” in Proc. 33rd European Microwave Conf., pp. 727- 729, Oct. 2003.
[12] T. G. Ma and S. K. Jeng, “Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios,” IEEE Trans. Antennas Propagat., vol. 53, pp. 1194- 1202, March 2005.
[13] H. Ghannoum, S. Bories; C. Roblin and A. Sibille, “Biconical antennas for intrinsic characterization of the UWB channel,” 2005 IEEE International Workshop on Antenna Technology, pp. 101-104, March 2005.
[14] J. D. Morrow, “Shorted biconical antenna for ultra-wideband applications,” 2003 Radio and Wireless Conference, pp. 143-146, Aug. 2003.
[15] A. A. Lestari, A. G. Yarovoy and L. P. Ligthart, “RC-loaded bow-tie antenna for improved pulse radiation,” IEEE Trans. Antennas Propaga., vol. 52, no.10, pp. 2555- 2563, Oct. 2004.
[16] P. Cerny and M. Mazanek, “Optimized Ultra Wideband Dipole Antenna,” 18th International Conf. Applied Electromagnetics and Communications, pp. 1-4, Oct. 2005.
[17] T. Taniguchi and T. Kobayashi, “An omnidirectional and low-VSWR antenna for ultra-wideband wireless systems,” 2002 IEEE Radio and Wireless Conf., pp. 145
-148, Aug. 2002.
[18] A. Kerkhoff, R. Rogers, H. Ling, “The use of the genetic algorithm approach in the design of ultra-wideband antennas,” 2001 Radio and Wireless Conf., pp. 93- 96, Aug. 2001.
[19] M. Hammoud, P. Poey, F. Colombel, “Matching the input impedance of a broadband disc monopole,” Electron. Lett., vol. 29, no.4, pp. 406-407, Feb. 1993.
[20] N. Kuga and H. Arai, “Wideband crossed elliptical disk monopole antenna,” IEEE AP-S Int. Symp. Dig., vol. 3, pp. 624-627, June 2003.
[21] Z. N. Chen, “Novel bi-arm rolled monopole for UWB applications,” IEEE Trans. Antenna Propaga., vol. 53, no. 2, pp. 672-677, Feb. 2005.
[22] S. Y. Suh, W. L. Stutzman and W. A. Davis, “A new ultrawideband printed monopole antenna: the planar inverted cone antenna (PICA),” IEEE Trans. Antennas Propaga., vol. 52, pp. 1361-1364, May 2004.
[23] S. Y. Suh, W. L. Stutzman, W. A. Davis, A. Waltho and J. Schiffer, “A novel CPW-fed disc antenna,” 2004 IEEE AP-S Int. Symp., vol. 3, pp. 2919-2922, June 2004.
[24] K. Chung, T. Yun and J. Choi, “Wideband CPW-fed monopole antenna with parasitic elements and slots,” Electron. Lett., vol. 40, no. 17, pp. 1038-1040, Aug. 2004.
[25] T. Yang and W. A. Davis, “Planar half-disk antenna structures for ultra-wideband communications,” IEEE AP-S Int. Symp., vol. 3, pp. 2508-2511, June 2004.
[26] W. Wang, S. S. Zhong and X. L. Liang, “A broadband CPW-fed arrowlike printed antenna,” 2004 IEEE AP-S Int. Symp., vol. 1, pp. 751-754, June 2004.
[27] X. L. Liang, S. S. Zhong, W. Wang and F. W. Yao, ” Printed annular monopole antenna for ultra-wideband applications,” Electron. Lett., vol. 42, no. 2, pp. 71- 72, Jan. 2006.
[28] Y. J. Ren, K. Chang, “Ultra-wideband planar elliptical ring antenna,” Electron. Lett., vol. 42, no. 8, pp. 447- 448, April 2006.

[29] C. Y. Huang and W. C. Hsia, “Planar elliptical antenna for ultra-wideband communications,” Electron. Lett., vol. 41, no. 6, pp. 296- 297, March 2005.
[30] M. A. Peyrot-Solis, G. M. Galvan-Tejada, H. Jardon-Aguilar, “State of the art in ultra-wideband antennas,” 2005 2nd International Conf. Electrical and Electronics Engineering, pp. 101-105, Sept. 2005.
[31] H. G. Schantz, G. Wolenec and E. M. Myszka, “Frequency notched UWB antennas,” Proc. UWBST Conf., pp. 214-218, Nov. 2003.
[32] H. Yoon, H. Kim, K. Chang, Y. J. Yoon and Y. H. Kim, “A study on the UWB antenna with band-rejection characteristic,” 2004 IEEE AP-S Int. Symp., vol. 2, pp. 1784-1787, June 2004.
[33] J. Kim, C. S. Cho and J. W. Lee, “5.2 GHz notched ultra-wideband antenna using slot-type SRR,” Electron. Lett., vol. 42, no. 6, pp. 315-316, March 2006.
[34] W. Choi, K. Chung, J. Jung and J. Choi, “Compact ultra-wideband printed antenna with band-rejection characteristic,” Electron. Lett., vol. 41, no. 18, pp. 990-991, Sept. 2005.
[35] Y. Kim, and D. H. Kwon, “CPW-fed planar ultra wideband antenna having a frequency band notch function,” Electron. Lett., vol. 40, no. 7, pp. 403-405, April 2004.
[36] A. Kerkhoff and H. Ling, “Design of a planar monopole antenna for use with ultra-wideband (UWB) having a band-notched characteristic,” 2003 IEEE AP-S Int. Symp., vol. 1, pp. 830-833, June 2003.
[37] Y. Mushiake, “The input impedances of slit antennas,” IEE of Japan, vol. 69-3, pp. 87-88, March 1949.
[38] V. H. Rumsey, “Frequency Independent Antenna,” Academic Press, New York and London, 1966.

[39] Y. Mushiake, “Self-complementary antennas,” IEEE Antennas and Propagation Magazine, vol. 34, no. 6, pp. 23-29, Dec. 1992.
[40] F. Kuroki and H. Simizu, “A Self-Complementary Antenna with Spiral Configuration,” 2006 IEEE IWAT, pp.116-119, March 2006.
[41] H. Mosallaei and K. Sarabandi, “A compact ultra-wideband self-complementary antenna with optimal topology and substrate,” 2004 IEEE AP-S Int. Symp., vol. 2, pp. 1859-1862, June 2004.
[42] P. Xu and K. Fujimoto, “L-shaped self-complementary antenna,” 2003 IEEE AP-S Int. Symp., vol. 3, pp. 95-98, June 2003.
[43] J. M. Gonzalez-Arbesu, J. M. Rius and J. Romeu, “ Some pre-fractal self- complementary antennas,” 2004 IEEE AP-S Int. Symp., vol. 4, pp. 3449-3452, June 2004.
[44] A. Saitou, T. Iwaki, K. Honjo, K. Sato, T. Koyama and K. Watanabe, “Practical realization of self-complementary broadband antenna on low-loss resin substrate for UWB applications,” 2004 IEEE MTT-S Digest, vol. 2, pp. 1265 - 1268, June 2004.
[45] R. S. Elliott, “Antenna Theory and Design,” revised edition, a John Wiley & Sons, Inc., Chapter 7.
[46] M. Kominami, D. M. Pozar and D. H. Schaubert, “Printed dipole and slot antennas on semi-infinite substrates,” 2004 IEEE AP-S Int. Symp., vol. 3, pp. 2763-2766, June 2004.
[47] E. N. Grossman, “Lithographic antennas for submillimeter and infrared frequencies,” 1995 IEEE Int. Symp. Electromagnetic Compatibility, pp. 102-107, Aug. 1995.
[48] O. E Allen, D. A. Hill and A. R. Ondrejka, “Time-domain antenna characterizations,” IEEE Trans. Electromag. Compat., vol. 35, no. 3, pp. 339-346, Aug. 1993.
[49] D. Lamensdorf and L. Susman, “Baseband-pulse-antenna techniques,” IEEE Antennas Propagat. Mag., vol. 36, no. 1, pp. 20-30, Feb. 1994.
[50] A. Shlivinski, E. Heyman and R. Kastner, “Antenna characterization in the time domain,” IEEE Trans. Antennas Propagat., vol. 45, no. 7, pp. 1140-1149, July 1997.
[51] E. G. Farr and C. E. Baum, “Extending the definitions of antenna gain and radiation pattern into time domain,” Sensor and simulation notes, note 350, Air Force Research Laboratory, 1992.
[52] E. G. Farr and C. E. Baum, “General properties of antennas,” Sensor and simulation notes, note 330, Air Force Research Laboratory, 1991.
[53] E. G. Farr and C. E. Baum, “Time domain characterization of antennas with TEM feeds,” Sensor and simulation notes, note 426, Air Force Research Laboratory, 1998.
[54] B. Scheers, M. Acheroy and A. Vander Vorst, “Time-domain simulation and characterisation of TEM horns using a normalised impulse response,” IEE Proc.-Microw. Antennas Propagat., vol. 147, pp. 463-468, Dec. 2000.
[55] S. Promwong, W. Hachitani and J. Takada, “Free space link budget evaluation of UWB-IR systems,” Proc. Jonit UWBST & IWUWBS 2004, pp. 312-216, May 2004.
[56] C. E. Baum, E. G. Farr and C. A. Frost, “Transient gain of antennas related to the traditional continuous-wave (CW) definition of gain,” Ultra-Wideband Short-Pulse Electromagnetics 4, pp. 109-118, June 1998.
[57] T. G. Ma and S. K. Jeng, “ Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios,” IEEE Trans. Antennas Propagat., vol. 53, no. 3, pp. 1194 -1202, March 2005.
[58] C. P. Wen, “Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” IEEE Trans. Microwave Theory Tech., vol. 17, no. 12, pp. 1087-1090, Dec. 1969.
[59] V. H. Rumsey, “Frequency Independent Antenna,” second printing, 1968.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 馬鳳岐、許洪坤、黃碧桃、穆佩芬、顧小明(2000)•有罹患癌病兒童之家庭的壓力—對母親之衝擊•護理研究,8(5),568-577。
2. 范君瑜(1996)•重症頭部外傷病人家屬之需求及其影響因素探討•護理研究,4(3),273-283。
3. 李淑莉、陳月枝(2001)•兒童經歷開心手術治療過程母親的壓力源及因應行為•護理研究,9(2),172-181。
4. 李雅玲、林安麗、林宜蓉(2000)•系統性護理指導對腸造口病童照顧者的影響•慈濟醫學,12(2),131-139。
5. 李淑瓊、趙倩(1996)•兩種衛教方式對經導管電器灼燒術患者認知及焦慮程度之探討•榮總護理,13(4),404-412。
6. 邱麗珠、郭碧照、林中生(2000)•內科重症病房病人家屬需求及其影響因素探討•中山醫學雜誌,11,7-18。
7. 石燕菁、劉柏卿、張麗銀、吳杰亮、張瓊如、侯淑芩、陳美婉(2005)•提高加護病房病人家屬對治療計畫及病情說明滿意度方案•榮總護理,22(2),149-158。
8. 何延鑫(1998)•運用護理指導增進門診結核病個案服藥之遵從行為•榮總護理,15(3),315-320。
9. 王秀珍(1999)•加護病房病人家屬需求及其護理•護理雜誌,46(2),67-71。
10. 穆佩芬(1997)•孩童健康有危機之家庭壓力經驗-一個現象學的研究•榮總護理,14(4),394-404。
11. 穆佩芬(1998)•孩童健康有危機之家庭壓力調適-父母親之調適模式•榮總護理,15(2),115-124。
12. 鍾聿琳、黃衍文(1999)•多媒體互動式光碟教學對認知成就及學習態度影響之初探•民意研究季刊(210),69-89。