跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李思賢
研究生(外文):Si-Xian Li
論文名稱:X頻段調頻連續波雷達系統之混頻器與介質諧振振盪器設計
論文名稱(外文):Design of Mixer and Dielectric Resonator Oscillator for X-band FMCW Radar System
指導教授:莊晴光
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:61
中文關鍵詞:混頻器介質諧振振盪器
外文關鍵詞:MixerDROSOC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為兩部份,第一部份利用0.18微米互補性金屬氧化物半導體(CMOS)製程,提出了一個10.5 GHz 微波混頻器 (MICROMIXER) 應用在 X頻段的調頻連續波(FMCW)雷達系統。在電路方面,為了提升混頻器在整個系統的隔離度(isolation),並免干擾其他電路的功能,電路設計與佈局技術特別注重此特性。在被動元件方面,傳輸線型式之電感與由介質基板及上、下兩層互補式金屬圖案所構成合成傳輸線(CCS TL)結合運用在此混頻器。另外,降頻混波器的設計與特性也有詳細的討論。
本論文的第二部份提出一個10.5 GHz介質諧振振盪器 (Dielectric Resonator Oscillator) 結合了單晶片微波積體電路(MMIC)利用0.18微米互補性金屬氧化物半導體製程。圓形的微帶線取代了原本的直線的微帶線,圓形的微帶線與介電共振器(DR)耦合提供較高的負載品質因數(loaded Q),其相位雜訊在100 kHz位移為 -118 dBc/Hz。為了達到較低的相位雜訊,場論方析用來最佳化介質諧振振盪器的耦合電路。
In this thesis, firstly, a MICROMIXER for X-band FMCW radar application is realized in 0.18μm CMOS process. At circuit level, circuit and layout technique to improve the isolation are discussed. At device level, the synthetic guiding structure complementary-conducting-strips (CCS) transmission line and transmission line inductor are employed to the mixer. In addition, the design and characterization of downconversion mixer are described.
Secondly, an X-band dielectric resonator oscillator using MMIC fabricated by 0.18μm CMOS process is presented. The novel circular line DRO used to replace the conventional straight line DRO features higher loaded Q. This circuit demonstrated a low noise of -118dBc/Hz at offset frequency of 100 KHz. Field analysis help in finding optimized DR coupling circuit that DR would be coupled to achieve better phase noise.
Contents
摘要 1
Abstract 2
Contents 3
List of Tables and Figures 5
Chapter 1 Introduction 7
1.1 Background and Motivation ……………………….…………………………....7
1.2 X-band FMCW Radar Principles .................................................9
1.3 Literature Survey ...................................................................14
A. Mixer…………………………………..……………………………………......14
B. DRO……………………….………………………………………………...…..14
1.4 Chapter Outlines .................................................................................................15
Chapter 2 Design Considerations for Mixers 16
2.1 Introduction …………………………………………………………………...16
2.2 Mixer Fundamentals ……………………………………………………………16
A. Mixing Phenomena ………………………………………………………….....16
B. Linearity and Nonlinearity………………………………………………...…..16
C. Noise in Mixers………………………………………………………………....19
D. Port-to-Port Isolation…………………………………………………………..20
2.3 Passive Components…………………………………………………….………20
A. CCS TL …………………………………………………………........................21
B. On-Chip Inductor………………………………………………..................…..23

Chapter 3 Design of X-band MICROMIXER 26
3.1 Introduction ………………………..………………………………………...…26
3.2 Mixer Design ..................................................................................................27
A. Circuit Architecture ……………………...……….………………….…...…….27
B. Measurement and Theoretical Results…………………………………...……29
C. Layout Issue …………………………………..…………………………….…..31
3.3 Conclusion…………………………….................................................................33
Chapter 4 Future development: Design of 10.5 GHz CMOS Dielectric Resonator Oscillator for Injection-Locked VCO 34
4.1 Introduction ………………………..………………………………………...…34
4.2 DRO Fundamentals ...........................................................................34
A. DR Modes …………………………………………………………...…………..34
B. DR Theory……………………………..……………………………………...…42
C. Coupling Circuit ………………………………………………………………..46
D. Mechanical Frequency Tuning…………………………………………………49
E. Negative Resistance ………………………………………………………...…..50
4.3 DRO Design …………………………………………………………………….51
A. Circuit Architecture ………….…………………………………………...…….51
B. Measurement and Theoretical Results…………...……………………………52
4.4 Conclusion…...................................................................54
Chapter 5 Conclusion 55
5.1 Summary ……..…...……………..………..………….…….………………….55
5.2 Future Work ………………….……………………………………………….55
References 57
List of Tables and Figures

Chapter 1.
Fig. 1.1. The block diagram of the CMOS FMCW multifunction chip...............................8
Fig. 1.2. Radar ranging concept ……………………………………………………….....9
Fig. 1.3. Unmodulated CW signal time (a) and frequency (b) response ..........................10
Fig. 1.4. Doppler shift concept …………….......................................................................10
Fig. 1.5. Sinusoidal and triangular frequency modulated CW signal response…………11
Chapter 2.
Fig. 2.1. Nonlinear downconversion spectrum...………………..........................................17
Fig. 2.2. Conceptions of intercept and compression points……………………………....18
Fig. 2.3. Noise aliasing from harmonics LO sidebands .......................................................19
Fig. 2.4. Cross section of a typical CMOS process from Metal 1 (bottom metal) to Metal 6 (top metal)…………………………………..…………………………………………20
Fig. 2.5. A typical CCS TL. The blue line is signal path and the green line is meshed ground plane ……………..........................................................................................................21
Fig. 2.6. Dispersive characteristics of the 50 ohm CCS TL at 10.5GHz. (a) SWF and loss(b) characteristic impedance……..……………….…………………………………………..22
Fig. 2.7. Top view of CCS unit cell ………..………………………..……..........................23
Fig. 2.8. Die photo of the 6.5 turns inductor. CCS ground plane is in the bottom metal layer. The size of the spiral is 108 x 108μm2……..………………...………………...………….....24
Fig. 2.9. A Prototype for measuring electromagnetic coupling of the adjacent CCS inductors with edge-to-edge spacing of 90um……………………………….………….………….......25
Fig. 2.10. Measured transmission coefficients of the adjacent inductor………….…………25
Chapter 3.
Fig. 3.1. The schematic of the proposed mixer...…………….........................................27
Fig. 3.2. Measured and simulated return loss in mixer RF/LO ports………………….....29
Fig. 3.3. Measured and simulated conversion loss ...............................................................30
Fig. 3.4. Measured and simulated port to port isolation……………………………30
Tab.3.1. Mixer Performance Summary …..............................................………….…….....31
Fig. 3.5. The die photo of CMOS MICROMIXER………………………………………32


Chapter 4.
Tab.4.1. Resonant frequencies and Q factors of the eight lowest modes …...........…….....35
Fig. 4.1. Electric field of the mode in the X-Y plane (a) and magnetic field of the mode in the Y-Z plane........................................................................................36
Fig. 4.2. Magnetic field and electric field of the mode in the X-Y plane (a) and Y-Z plane (b)………………………………………………………………….…….....37
Fig. 4.3. Magnetic field (a) and electric field (b) of the hybrid mode in the X-Y plane ..............................................................................................................................38
Fig. 4.4. Electric field of the hybrid mode in the X-Y plane (a) and Y-Z plane (b),magnetic filed in the Y-Z plane
Reference

[1]Dennis Buss, Brian L. Evans, Jeff Bellay, William Krenik, Baher Haroun, Dirk Leipold, Ken Maggio, Jau-Yuann Yang, and Ted Moise ; “SOC CMOS Technology for Personal Internet Product” ,IEEE Trans. on ELECTRON DEVICES, vol. 50, no. 3, march 2003. .
[2]Taiwan Semiconductor Manufacturing Co., LTD
[3]G. Chien, W. Feng, Y. A. Hsu, L. Tse; “A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application,” ISSCC. Dig. Tech. Papers, Feb. 2003.
[4]M. Zargari, M. Terrovitis, S. Hung-Min Jen, B. J. Kaczynski, M. Lee, M. P. Mack, S. S. Mehta, S.Mendis, K. Onodera, H. Samavati, W. W. Si, K. Singh, A. Tabatabaei, D. Weber, D. K. Su, and Bruce A. Wooley ; “A Single-Chip Dual-Band Tri-Mode CMOS Transceiver for IEEE 802.11a/b/g Wireless LAN,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2239-2249, Dec. 2004.
[5]Z. Xu, S. Jiang, Y. Wu, Heng-yu Jian, G. Chu, K. Ku, P Wang, N. Tran, Q. Gu, Ming-zhi Lai, C. Chien, M. F. Chang, P. D. Chow, “A Compact Dual-Band Direct-Conversion CMOS Transceiver for 802.11a/b/g WLAN,” ISSCC Dig. Tech. Papers, pp. 98-99, Feb. 2005Wen, C. P.; “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969.
[6]F. O. Eynde et al, ;”A Fully Integrated Single-Chip Sc for Bluetooth,” IEEE ISSCC tech. Dig., pp. 196-197, 2001.
[7]A. Leeuwenburgh et al,; “A 1.9GHz Fully Integrated CMOS DECT Transceiver,” IEEE ISSCC Tech. Dig., page 450, 2003.
[8]Giuseppe Gramegna, Philip G. Matto, Marco Losi, Sabyasachi Das, Massimo Franciotta, Nino G. Bellantone, Michele Vaiana, Valentina Mandara, and Mario Paparo ;”A 56-mW 23- Single-Chip 180-nm CMOS GPS Receiver with 27.2-mW 41- Radio” IEEE JSSC, vol. 41, no.3, March 2006
[9]W. H. Haydl, M. Neumann, and L. Verweyen, “Single-Chip Coplanar 94-GhHz FMCW Radar Sensor,” IEEE Microwave and Guided Wave Letters, vol. 9,no. 2 Feb. 1999.
[10]L. Reynolds and Y. Ayasli, “Single Chip FMCW Radar for Target Velocity and Range Sensing Application,” 1989 GaAs IC symp. Dig., 1989, 11th Annual 22-25,pp. 243-246, Oct. 1989.
[11]K. W. Chang, G. S. Dow, H. Wang, and T. H. Chen, “A W-band Single-chip Transceiver for FMCW Radar,” 1993 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig., pp. 41-44, 14-15 June 1993.
[12]A. Tessmann, S. Kudszus, T. Feltgen, and M. Riessle, “A 94 GHz Single-Chip FMCW Radar Module for Commercail Sensor Applications,” 2002 IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1851-1854, 2-7 June 2002.
[13]Ching-Kuang C. Tzuang, Chi-Ho Chang, Hsien-Shun Wu, Sen Wang, Si-Xian Lee, Chih-Chia Chen, Chi-Yang Hsu, Kun-Hung Tsai, Johnsea Chen, “An X-band CMOS Multifunction-Chip FMCW Radar,”
[14]Byron Edde,” Radar Principles, Technology, Applications,” Prentice-Hall International, Inc.
[15]Jing Yongqi, He Guoyu, “ A FTDC Technique To Improve the Rnge Resolution of Short FMCW Radar” 2003 3rd International Conference on Microwave and Millimeter Wave Technology Proceeding.
[16]P.CREMONA, “PARAMETRIC SPECTRUM ANALYSIS FOR TARGET CHARACTERIZATION,” The Intelligent Vehicles''94 Symposium; Paris; Fr; 24-26 Oct. 1994. pp. 149-154. 1994
[17]B. Gilbert, “A precise Four-Quardrant Multiplier with Subnanosecond Response,” IEEE JSSC, vol. SC-3, pp. 365-373, Dec.1968.
[18]Manolis T. Terrovitis, and Robert G. Meyer, “Intermodulation Distortion in Current-Commutating CMOS Mixers,” IEEE JSSC, vol. 35, no. 10, October 2000.
[19]Danilo Manstretta, Massimo Brandolini, Francesco Svelto, “Second-Order Intermodulation Mechanisms in CMOS Downconverters,” IEEE JSSC, vol. 38, no. 3, March 2003.
[20]M. Terrovitis, R. Meyer, “Noise in Current Communtating CMOS Mixer,” IEEE JSSC, vol. 34, p. 772-783, June 1999.
[21]C. Hull, R. Meyer, “A Systematic approach to the Analysis of Noise in Mixer,” IEEE Trans. On Circuits and Systems-I; Fundamental Theory and Applications, vol. 40, pp. 909-919, Dec. 1993.
[22]H. Darabi, A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model,” IEEE JSSC, vol. 35, pp. 15-25, Jan. 2000.
[23]T. Melly, A.-S. Porret, C. C. Enz, E. A. Vittoz, “An Analysis of the Flicker Noise Rejection in Low-Power and Low-voltage CMOS Mixers,” IEEE JSSC, vol. 36, pp. 102-109, Jan. 2001.
[24]Barrie Gilbert, “The MICROMIXER; A Highly Linear Variant of the Gilbert Mixer Using a Bisymmetric Class-AB Input Stage,” IEEE JSSC, vol. 32, no.9, September 1997.
[25]W. R. Day, Jr., “Dielectric resonators as microstrip circuit elements,” IEEE MTT-S Int. Microwave Symp. Dig., 1970, pp 24-28.
[26]Saito, Y. Arai, Y. Itoh, T. Nishikawa, and H. Komizo, “A 6 Ghz highly stabilized GaAs FET oscillator using a dielectric resonator,” presented at the 37th Annu. Freq. Contr. Symp., 1983.
[27]M. Regis , O. Llopis , B. Van Haaren R. Plana , A. Gruhle , J. Rayssac , J. Graffeuil, “Ultral Low Phase Noise C and X Band Bipolar Transistors Dielectric Resonator Osillators,” 1998 IEEE International Frequency Control Symposium.
[28]Muhammad Mizan, Dana Sturzebecher, Thomas Higgins, and Arthur Paolella, “An X-Band, High Power Dielectric Resonaotr Oscillator for Future Military Systems,” IEEE Trans. On ultrasonics, ferroelectrics, and frequency control, vol. 40, no. 5, September 1993.
[29]Stephen A. Maas, “Microwave Mixers,” Artech House Publishers; 2nd edition (September 1992)
[30]M. Terrovitis, R. Meyer, “Intermodulation Distortion in Current Communication CMOS Mixers,” IEEE JSSC, vol. 35, pp. 1461-1473, Oct. 2000.
[31]K. L. Fong, R. Meyer, “High-Frquency Bipolar Transistor Integrated-Circuit Mixers,” IEEE JSSC, vol. 33, pp. 548-555, April 1998.
[32]A. Parssinen, Dierct Conversion Recivers in Wide-Band Systems, PH.D. Dissertation, Helsinki Unversity of Technology, Espoo, Finland, 2000, 235 p.
[33]K. L. Fong, R. Meyer, “Monolithic RF Active Mixer Design,” IEEE Trans. On Circuit and Systems- II : Analog and Digital Signal Processing, vol. 46, pp. 231-239, March 1999.
[34]C.-C. Chen and C. -K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microwave Theory and Tech., vol. 52, pp.1637-1647, June 2004.
[35]Razavi, B,;“A 60-GHz CMOS receiver front-end,” IEEE JSSC, vol. 41, no. 1, January 2006.
[36]Razavi, B. “RF MICROELECTRONICS ” PRENTICE HALL COMMUNICATIONS ENGINEERING AND EMERGING TECHNOLOGIES SERIES
[37]www.
[38]D. Kajfez, “Basic principles give understanding of dielectric waveguides and resonators,” Microwave Systems News, vol. 13, pp.152-161, May 1983.
[39]www.trans-technic.com
[40]David M. Pozar, “Microwave Engineering,” John Wiley & Sons, Inc.
[41]Darko Kajfez and Pierre Guillon, “Dielectric Resonators”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top