|
[1] J. H. McClellan and T. W. Parks, “Eigenvalue and eigenvector decomposition of the discrete Fourier transform,” IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 66-74,1972 [2] B. W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 25-31, Feb. 1982 [3] 溫家昶, “Closed-form eigenvectors of Discrete Fourier and Number Theoretic Transform”, Master thesis in Graduate Institute of Communication Engineering, National Taiwan University, 2002. [4] A. Terras, Fourier analysis on finite groups and applications, Ch8 1999, Cambridge University Press [5] D. T. Birtwistle, “The eigenstructure of the number theoretic transforms”, Signal Processing, vol. 4, No. 4, pp. 287-294, 1982 [6] I. S. Reed and T. K. Truong, “The use of finite fields to compute convolutions,”IEEE Trans. Inform. Theory, vol. IT-21, pp. 208–213, 1975. [7] B. C Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, Ch1 1998, A Wiley-Interscience publication [1] E. Cohen,” A class of arithmetical functions”, Proc. Nat. Acad. Sci. U.S.A., vol. 41, 1955, pp. 939-944. [2] E. Cohen, “Representations of even functions . I. Arithmetical identities,” Duke Math. J., vol. 25, pp. 401-421, 1958. [3] Alan V. Oppenheim and Ronald W. Schafer with John R. Buck, Discrete-Time Signal Processing, 2nd ed. Prentice Hall International Editions, 1989. [4] S. Ramanujan, “On certain trigonometrical sums and their application in the theory of numbers,” Trans. Comb. Phil. Soc., vol. 22, pp. 259-276, 1918 [5] M. Planat, H. Rosu, and S. Perrine, “Ramanujan sums for signal processing of low-frequency noise,” Phys. Rev. E, vol. 66, p. 51128, 2002. [6] Saed Samadi, M. Omair Ahmad, and M. N. S. Swamy, “Ramanujan Sums and Discrete Fourier Transforms,” IEEE Signal Processing Letters, vol. 12, no. 4, pp. 293-296, April 2005. [1] A. Karp, “Bit reversal on uniprocessors,” SIAM Rev., vol. 38, no. 1, pp. 1-26, Mar. 1996. [2] A. Elster, ”Fast bit-reversal algorithms,” in Proc, ICASSP’89, 1989, pp.1099-1102. [3] D. Evans, “An improved digital-reversal permutation algorithm for the fast fourier transforms,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 1120-1125, Aug.1987. [4] D. Evans, “A second improved digital-reversal permutation algorithm for the fast fourier transforms,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1288-1291, Aug. 1989. [5] J. Walker, “A new bit-reversal algorithm," IEEE Trans. Signal Processing, vol. 38, pp. 1472-1473, Aug. 1989. [6] P. Duhamel and J. Prado, “A connection between bit-reverse and matrix transpose, hardware and software consequences,” in Proc, ICASSP’88, 1988, pp. 1403-1406. [7] B. Gold and B. Rader, Digital Processing of Signal. New York:McGraw-Hill, 1969. [8] A. Yong, “A better FFT bit-revesal algorithm without tables,” IEEE Trans. Signal Processing, vol. 39. pp. 2365-2367, Oct. 1991. [9] M. Orchard, “Fast bit-reversal algorithms based on index representations in gf(2b),” IEEE Trans. Signal Processing, vol. 40, pp. 1004-1008, Apr. 1992. [10] J. Rius and R. D. Porrata-Dorin, “New FFT bit-reversal algorithm,” IEEE Trans. Signal Processing, vol. 49, pp. 251-254, Jan. 2001. [11] K. Drouiche, “A new efficient computational algorithm for bit reversal mapping," IEEE Trans. Signal Processing, vol. 49, pp. 251-254, Jan. 2001. [12] J. Prado, “A new fast bit-reversal permutation algorithm based on a symmetry" IEEE Signal Processing Letters, vol. 11, pp. 933-936, Dec. 2004. [1] Schtte, H.-D., Wenzel, J., “Hypercomplex numbers in digital signal processing”, IEEE International Symposium on Circuits and Systems, 1990 pp. 1557-1560 vol.2 [2] Clyde M. Davenport, “A communicative Hypercomplex Algebra with Associated Function Theorey”, In R. Ablamowicz, editor, Clifford Algebra with Numeric and Symbolic Computations, pp. 213~227. Birkhauser, Boston, 1996. [3] Sebastian. Miron, Nicolas Le Bihan, and Jérôme I. Mars, “Quaternion-MUSIC for Vector-Sensor Array Processing”, IEEE Transactions on Signal Processing, vol. 54, NO. 4, April 2006. pp. 1218-1229. [4] Ralph O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation”, IEEE Transactions on Antennas and Propagation, vol. AP-34, No. 3, March 1986. pp 276-280. [5] JH Chang, “Applications of Quaternions and Reduced Biquaternions for Digital Signal and Color Image Processing” Doctoral dissertation in Graduate Institute of Communication Engineering, National Taiwan University, 2004. [1] I. S. Reed and T. K. Truong, “The use of finite fields to compute convolutions,”IEEE Trans. Inform. Theory, vol. IT-21, pp. 208–213, 1975.
|