跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊秉杰
研究生(外文):Ping-Chieh Yang
論文名稱:自主輪型機器人之自評自調追跡控制
論文名稱(外文):Adaptive Critic Trajectory Tracking Control of Autonomous Wheeled Robot
指導教授:林巍聳
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:93
中文關鍵詞:自評自調法追跡控制機器人類神經網路
外文關鍵詞:Adaptive critic designtracking controlmobile robotneural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在發展視覺導航行動機器人的追跡控制系統,此追跡控制系統分為自評自調速度控制和姿態控制兩個部份。自評自調速度控制使行動機器人可以自動適應各種路面,本研究採用雙啟發規劃法推導其學習驗算法。姿態控制器由類神經網路所構成,控制法則是經由學習程序自動建立,無需人工進行控制系統分析與設計。姿態控制類神經網路所學習的對象是行動機器人的逆向駕駛模型,所以用各種不同速度連續駕駛行動機器人,其速度和位移的記錄就可以做為訓練樣本。視覺導航系統可以看到遠方,因此可以提供未來即將行進的軌跡,這種預測未來的資訊可以在追跡控制系統內加以運用,讓行動機器人可以為即將發生的變化預作準備。路線規劃器和姿態控制類神經網路的學習機制都有將這種高階控制理念列入設計。電腦模擬各種學習和控制狀況的結果顯示整個追跡控制系統的設計具實用性。
The trajectory tracking controller of a wheeled mobile robot (WMR) is designed to compose an adaptive critic velocity controller and a neural network based posture controller. The learning algorithm of the adaptive critic velocity controller is derived by using dual heuristic programming (DHP) method. This adaptive critic design enables the WMR system to comply with variant road conditions. The posture controller design uses MLP neural network to learn the inverse drive model of WMR. The training patterns are obtained by continuously driving WMR with a variety of velocities. Vision information about a desired trajectory in the near future is utilized in both path planner and posture controller. This information can prepare the WMR system for changes in the trajectory in advance. Extensive simulation studies have verified the feasibility of the proposed design.
摘要 i
ABSTRACT iii
Chapter 1 1
Introduction 1
1.1 Background of this research 1
1.2 Motivation and Contribution 3
1.3 Organization of This Thesis 4
Chapter 2 5
Design Methods of Adaptive Critic Neural Control System 5
2.1 Introduction 5
2.2 Adaptive critic neural control with heuristic dynamic programming 9
2.3 Adaptive critic neural control with dual heuristic programming 13
2.4 Adaptive critic neural control with globalized dual heuristic programming 17
2.5 Summary 20
Chapter 3 23
Design of Adaptive Critic Trajectory Tracking Control System 23
3.1 Architecture of the trajectory tracking control system 23
3.2 Adaptive critic design of the velocity controller 24
3.2.1 Architecture of adaptive critic velocity controller 25
3.2.2 The utility function 25
3.2.3 The action network 26
3.2.4 The critic network and the verification network 27
3.2.5 The plant model 29
3.2.6 Training algorithm of the adaptive critic velocity controller 29
3.3 Design of the posture controller 31
3.3.1 Learning the inverse drive model by neural network 31
3.3.2 Learning of neural network 34
3.4 Path planning 36
3.4.1 Path planner 36
3.4.2 Position planner 37
Chapter 4 41
Adaptive Critic Trajectory Tracking Control of Wheeled Mobile Robot 41
4.1 Model of wheeled mobile robot (WMR) 41
4.2 Adaptive critic trajectory tracking control of WMR 44
4.3 Simulation studies of adaptive critic WMR control 46
4.3.1 Performance of adaptive critic velocity controller 46
4.3.2 Performance of neural network based inverse drive model 57
4.3.3 Performance of trajectory tracking control 71
Chapter 5 83
Conclusion 83
Appendix A 85
Parameters of the trained control system 85
A.1 Parameters of the trained posture controller 85
A.1.1 Parameters of the trained linear inverse drive model neural network in section 3.3.1 85
A.1.2 Parameters of the trained angular inverse drive model neural network in section 3.3.1 87
A.2 Parameters of the trained velocity controller 89
A.2.1 Parameters of the trained action network in section 3.2.3 89
A.2.2 Parameters of the trained critic and verification networks in section 3.2.4 89
References 91
[Faugeras, 1993] O.Faugeras, B. Hotz, H. Mathieu, T. Viville, Z. Zhang, P. Fua, E. Thron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy, “Real time correlation-based stereo: algorithm, implements and application,” Tech. Rep. 2013, INRIA, August 1993.
[Greenwood, 1988] D. T. Greenwood, Principles of Dynamics, Prentice-Hall, 1988
[Haykin, 1999] S. Haykin, Nrural Networks A Comprehensive Foudation, Prentice-Hall, 1999.
[Hu, 2003] Y. Hu, S. X. Yang, “A Fuzzy Neural Dynamics Based Tracking Controller for a Nonholonomic Mobile Robot,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol.1, pp. 205-210, July. 2003.
[Janglova, 2004] D. Janglova, “Neural Networks in Mobile Robot Motion,” International Journal of Advanced Robotic Systems, vol.1, no. 1, pp. 15-22, ISSN 1729-8806, 2004.
[Kanayama, 1990] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi,” A stable tracking control method for an autonomous mobile robot,” IEEE International Conference on Robotics and Automation, vol.1, pp. 384 -389, 1990.
[Lendaris ,1997] Lendaris,G., C. Paintz, and T. Shannon, 1997, “More on Training Strategies for Critic and Action Neural Nets in Dual Heuristic Programming Method”, in PROC of IEEE-SMC’97, Orlando, IEEE, October.
[Lendaris ,1998] Lendaris, G. and T. Shannon, 1998, “Application Considerations for the DHP Methodology,” in PROC of International Joint Conference on Neural Networks--IJCNN’98, Anchorage, IEEE, pp 1013-1018.
[Lin, 2004] Wei-Song Lin, Chin-Lung Huang, Ming-Kang Chuang and Ghing-Chieh Liu, “Modeling a wheeled mobile robot for autonomous navigation design,” IASTED International Conference on Modeling, Identification and Control, pp. 275-280, Grindelwald, Switzerland, Feb. 2004
[NASA, 2006] http://mars.jpl.nasa.gov
[Nelson, 1989] W.L. Nelson, “Continuous steering-function control of robot carts,” IEEE Transactions on Industrial Electronics. vol.36, pp.330-337, No.3, Aug.1989
[Park, 2001] K.H. Park, S.B. Cho, Y.W. Lee, ” Optimal tracking control of a nonholonomic mobile robot,” Proceedings. ISIE 2001. IEEE International Symposium on Industrial Electronics, vol. 3, pp. 2073 -2076, 2001.
[Prokhorov, 1995] D. Prokhorov and R. Santiago,and D. Wunsch, “Adaptive critrc designs: a case study for Neurocontrol,” Neural Networks, vol. 8, pp. 1367-1372, 1995.
[Prokhorov, 1997] D. Prokhorov and D. Wunsch, “Adaptive critrc designs,” IEEE Trans. Neural Networks, vol. 8, pp. 997-1007, Sept. 1997.
[Venayagamoorthy, 2002] G..K. Venayagamoorthy, R.G. Harley, D.G, Wunsch, “Comparison of heuristic dynamic programming and dual heuristic programming adaptive critics for neurocontrol of a turbogenerator,” Neural Networks, IEEE Transactions, vol. 13, issue 3, pp.764-773, May 2002.
[Wang, 2004] T.Y. Wang; C.C. Tsai, “Adaptive trajectory tracking control of a wheeled mobile robot via Lyapunov techniques,” Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE, vol.1, pp.389-394, Nov, 2004.
[Watkins, 1992] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp.279-292, 1992.
[Werbos, 1992] P.J. Werbos, “Approximate dynamic programming for real-time control and neural modeling,” in Handbook of Intelligent Contorl, White and Sofge, Eds. New York: Van Nostrand Reinhold, pp. 493-525.
[Wilamowski, 2003] B.M. Wilamowski, “Neural network architectures and learning,”
Industrial Technology, 2003 IEEE International Conference on Volume 1, 10-12 Dec. 2003 Page(s):TU1 - T12 Vol.1
[Yang, 1999] J. Yang and J. Kim. “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots,” IEEE Transactions on Robotics and Automation, 15(3):pp.578.-587, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊