跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳本盛
研究生(外文):Ben-Sheng Chen
論文名稱:靜態同步補償器之解析式諧波分析及控制器設計
論文名稱(外文):An Analytical Approach to Harmonic Analysis and Controller Design of a STATCOM
指導教授:許源浴許源浴引用關係
指導教授(外文):Yuan-Yih Hsu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:靜態同步補償器諧波變流器調變係數
外文關鍵詞:statcomharmonicsinvertermodulation index
相關次數:
  • 被引用被引用:5
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本博士論文首先分析傳統靜態同步補償器(Static Synchronous Compensator, STATCOM)控制器的優缺點,利用對靜態同步補償器輸出功率的靈敏度分析,得知要控制補償器輸出虛功大小時,直接對靜態同步補償器輸出電壓大小作控制,會比對相角作控制來得有效。其次在博士論文中也提出一個基於第一類Bessel函數的解析式諧波分析方法,由諧波分析的結果,可得知在穩態情況下,當調變係數被固定為1.0時,靜態同步補償器輸出電壓的總諧波失真會是最低,本論文利用此結論提出兩個新靜態同步補償器控制器。
本論文所提的第一種新型靜態同步補償器之控制器採用固定調變係數參考訊號,這新靜態同步補償器控制器利用穩態調變係數控制器,使靜態同步補償器之調變係數在其穩態時都固定為1.0,可使靜態同步補償器的輸出電壓和電流諧波降至最低,而且由所提出解析式方法來分析靜態同步補償器的諧波,再和電腦模擬及實驗所得的電壓和電流的諧波頻譜互相比較,可得知在穩態時,固定調變係數的新控制器可使靜態同步補償器輸出電壓和電流維持在最小諧波,而且可觀察到所提新靜態同步補償器控制器透過在暫態時對調變係數的快速調整,可建立出一個快速動態響應的系統,而非常有效率地調整交流系統匯流排電壓。
本論文中所提出第二種新型靜態同步補償器控制器是利用可調變直流電壓參考訊號,而為了要設計靜態同步補償器中電流調整器、直流電壓控制器、和交流電壓控制器之適當參數,本論文發展出一套以極點零點消去法、根軌跡、和極點指定法為基礎的系統設計流程。在穩態情形下,採用此新型控制器的靜態同步補償器因調變係數亦保持在固定常數為1.0,所以變流器產生的電壓和電流諧波失真將會被有效減少。其次,在暫態情形下透過對直流電壓命令的調整,靜態同步補償器輸出之虛功功率可以快速改變,以便來調整交流匯流排電壓。在穩態操作測試、電流參考命令步級改變測試、三相接地故障測試、和負載改變暫態測試情形下的模擬和實驗結果可以驗証所提出新靜態同步補償器控制器的有效性。
Steady-state harmonics and transient performance of the conventional static synchronous compensator (STATCOM) controllers are first investigated. Based on the sensitivity analysis of the STATCOM output power, it is found that the voltage magnitude is more effective than the phase angle in controlling the reactive power output. An analytical approach to harmonic analysis of a STATCOM based on Bessel functions of the first kind is described. Harmonic analysis of the STATCOM using the proposed analytical approach reveals that the total harmonic distortion of the STATCOM output voltage is minimal as the modulation index is fixed at unity at steady state. Based on these results, two new STACOM controllers are proposed in order to achieve both minimal steady-state harmonics and fast transient response.
The first STATCOM controller proposed in this thesis is one with a fixed modulation index reference. The modulation index is held constant at unity at steady state by the proposed STATCOM controller in order to minimize voltage and current harmonics. By comparing the voltage and current response curves and harmonic spectra obtained from the analytical approach, the computer simulations, and the experiments, it is concluded that minimal harmonics can be maintained at steady state and fast dynamic responses can be achieved to regulate ac system bus voltage by the proposed STATCOM controller through the fast adjustment of the modulation index during the transient period.
In the second proposed STATCOM controller, a variable DC capacitor voltage reference is employed to minimize voltage and current harmonics at steady state and to adjust DC capacitor voltage level and STATCOM output reactive power rapidly during the transient period. A systematic design procedure based on pole-zero cancellation, root locus method, and pole assignment method is developed in order to determine proper parameters for the current regulator, the DC voltage controller, and the AC voltage controller of the STATCOM. With the proposed STATCOM controller, harmonic distortions in the inverter output current and voltage can be reduced when the modulation index is held constant at unity in steady state. In addition, fast adjustment in the STATCOM output reactive power can be achieved to regulate AC bus voltage through the adjustment of DC voltage reference during the transient period. Simulation and experimental results for steady-state operating condition and transient operating conditions for the system subjected to reactive current step changing testing, three phase line to ground fault testing, and load changing testing are presented in order to demonstrate the effectiveness of the proposed STATCOM controller.
中文摘要 I
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 X
符 號 表 XI
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 6
1-3 研究動機與目的 7
1-4 論文內容概述 10
第二章 傳統靜態同步補償器控制器簡介 13
2-1 靜態同步補償器(STATCOM)簡介 13
2-1-1 STATCOM基本架構 14
2-1-2 數學模型 15
2-1-3 靜態同步補償器輸出功率 20
2-1-4 靈敏度分析 22
2-2 傳統相角控制( -control)方法 22
2-2-1 線性相角控制方法[24] 23
2-2-2 非線性控制方法[26] 24
2-3 調變係數-相角控制(MI- control)之靜態同步補償器(STATCOM)[26] 25
2-3-1 解耦合電流控制 26
2-3-2 調變係數-相角控制原理 27
第三章 靜態同步補償器之解析式諧波分析方法 29
3-1 前言 29
3-2 變流器輸出電壓數學模型[38,42] 29
3-3 變流器輸出電壓和電流之總諧波失真 33
3-4 靜態同步補償器輸出濾波器設計 34
3-5 本章結論 36
第四章 固定調變係數之靜態同步補償器控制器 37
4-1 前言 37
4-2 系統描述 37
4-3 靜態同步補償器控制器設計 38
4-3-1 暫態調變係數控制器 40
4-3-2 穩態調變係數調整器 40
4-3-3 比例-積分控制器設計 41
4-4 實驗系統設計 44
4-4-1 靜態同步補償器主體電路 46
4-4-2 電壓和電流感測元件 47
4-4-3 鎖相迴路單元 47
4-4-4 類比轉數位轉換器模組 47
4-4-5 控制核心模組 47
4-5 穩態結果比較 48
4-5-1 穩態諧波效能 48
4-5-2 總諧波失真比較 53
4-6 動態響應 55
4-7 本章結論 56
第五章 變動直流電壓參考命令之靜態同步補償器控制器 58
5-1 前言 58
5-2 系統描述 59
5-3 靜態同步補償器控制器設計 61
5-3-1 電流調整器的設計 65
5-3-2 直流電壓控制器的設計 66
5-3-3 交流電壓控制器的設計 68
5-4 實驗系統設計 70
5-5 模擬結果 71
5-5-1 穩態諧波特性之模擬結果 71
5-5-2 諧波頻譜模擬比較 73
5-5-3 動態響應模擬 75
5-6 實驗結果 75
5-6-1 穩態諧波特性實驗結果 75
5-6-2 總諧波失真實驗結果 78
5-6-3 動態響應 80
5-7 本章結論 83
第六章 結論 85
6-1 本文之主要貢獻 85
6-2 未來之研究方向 86
參考文獻 88
作者簡介 93
著作 93
參考文獻
[1]T. J. E. Miller, Reactive Power Control in Electric System, John Wiley & Sons Inc, 1982.
[2]K. Ramar and A. Srinivas, "Suppression of Low-Frequency Oscillations Using Static Var Compensator Controls," Electric Machines and Power Systems, vol. 17, pp.109-123, 1989.
[3]D. O''Kelly, H. H. Salem, and B. Singh, "Reduction of Voltage Flicker of a Simulated Arc Furnace by Reactive Compensation," Electric Power Systems Research, vol. 24, pp. 135-139, 1992.
[4]S. Mori, K. Matsuno, T. Hasegawa, S. Ohnishi, M. Takeda, S. Murakami, F. Ishiguro, "Development of a Large Static VAR Generator Using Self-Commutated Inverters for Improving Power System Stability," IEEE Transactions on Power Systems, vol. no.1, Feb. 1993.
[5]E. Z. Zhou, "Application of Static Var Compensators to Increase Power System Damping," IEEE Transactions on Power Systems, vol.8, no.2, pp.665-661, May 1993.
[6]C. E. Lin, T. C. Chen, and C. L. Huang, "Optimal Control of Static Var Compensator for Minimization of Line Loss," Electric Power Systems Research, 15, pp.51-61, 1988.
[7]M. Z. El-Adek, "Balancing of Unbalanced Loads Using Static VAR Compensators," Electric Power Systems Research, 12, pp.137-148, 1987.
[8]Mohamed Mostafa Saied, "Power Factor Correction Economic Feasibility and Technical Limitations," Electric Machines and Power Systems, 16, pp.363-377, 1989.
[9]E. Vasu, V. V. B. Rao, and P. Sankaran, "An Optimization for Three Phase Reactive Power Compensation," IEEE Transactions on Power Apparatus and Systems, vol.PAS-104, No.11, pp.3216-3220, Nov. 1985.
[10]R. E. Rinker and D. L. Rembert, "Using the Reactive Current Profile of a Feeder to Determine Optimal Capacitor Placement," IEEE Transactions on Power Delivery, vol.3, no.1, pp.411-416, Jan. 1988.
[11]Y. Y. Hsu and C. J. Wu, "Adaptive Control of a Synchronous Machine Using the Auto-Searching Method," IEEE Transactions on Power Systems, vol.3, no.4, pp.1434-1440, Nov. 1988.
[12]L. Gyugyi, "Power Electronics in Electric Utilities: Static Var Compensators," Proceedings of the IEEE, vol. 76, no. 4, pp.483-494, Apr. 1988.
[13]G. F. Ledwich, S. H. Hosseini, and G. F. Shannon, "Voltage Balancing Using Switched Capacitors," Electric Power Systems Research, 24, pp.85-90, 1992.
[14]G. Gueth, P. Enstedt, A. Rey, and R. W. Menzies, "Individual Phase Control of A Static Compensator for Load Compensation and Voltage Balancing and Regulation," IEEE Transactions on Power Systems, vol. PWRS-2, no.4, pp.898-905, Nov. 1987.
[15]Y. Matsuo, M. Yajima, H. Takeishi, and M. Nakano, "Self-Tuning Control of Static VAR Compensators," Electrical Engineering in Japan, vol.109, no.2, pp.117-125, 1989.
[16]R. Rajaramen, I. Dobson, and S. Jalali, "Nonlinear Dynamics and Switching Time Bifurcations of a Thyristor Controlled Reactor," Proceedings-IEEE International Symposium on Circuits and Systems, vol.4, pp.2180-2183, 1993.
[17]K. Dierberger, "IGBT Do''s and Don''ts," Power Electronics/Motion, PCIM, pp.50-55, Aug. 1992.
[18]N. G. Hingorani and L. Gyugyi, Understanding FACTS, IEEE press, 2000.
[19]C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T.W. Cease, and A. Edris, “Operation of ±100 MVAr TVA STATCON,” IEEE Transactions on Power Delivery, vol.12, pp.1805-1811, Oct. 1997.
[20]C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T.W. Cease, and A. Edris, “Development of a ±100MVAR Static Condenser for Voltage Control of Transmission Systems,” IEEE Transactions on Power Delivery, vol.10, pp. 1486-1496, July 1995.
[21]C. Schauder, E. Stacey, M. Lund, L. Gyugyi, L. Kovalsky, A. Keri, A. Mehraban, and A. Edris, “AEP UPFC Project: Installation, Commissioning and Operation of the ±160 MVA STATCOM (Phase Ⅰ),” IEEE Transactions on Power Delivery, vol. 13, pp. 1530-1535, Oct. 1998.
[22]G. F. Reed, J. E. Greaf, T. Matsumoto, Y. Yonehata, M. Takeda, T. Aritsuka, Y. Hamasaki, F. Ojima, A.P. Sidell, R.E. Chervus, and C.K. Nebecker, “Application of a 5 MVA, 4.16 kV D-STATCOM System for Voltage Flicker Compensation at Seattle Iron and Metals,” IEEE Power Engineering Society Summer Meeting, vol. 3, pp. 1605-1611, July 2000.
[23]L. Moran, P. Ziogas, and G. Joos, "Analysis and Design of a Three Phase Synchronous Solid-State VAR Compensator," IEEE Transactions on Industry Applications, Vol.25, no.4, pp.598-608, July/Aug. 1989.
[24]G. Joos, L. Moran, and P. Ziogas, "Performance Analysis of a PWM Inverter VAR Compensator," IEEE Transactions on Power Electronics, vol.6, no.3, pp.380-391, July 1991.
[25]L. Moran, P. D. Ziogas, and G. Joos, “A Solid-state High-performance Reactive-power Compensator,” IEEE Transactions on Industrial Application, vol. 29, pp. 969-978, Sept.-Oct. 1993.
[26]C. Schauder and H. Mehta, “Vector Analysis and Control of Advanced Static VAr Compensators,” IEE Proceedings-Generation, Transmission, and Distribution, vol. 140, pp. 299-306, July 1993.
[27]P. W. Lehn and M. R. Iravani, “Experimental Evaluation of STATCOM Closed Loop Dynamics,” IEEE Transactions on Power Delivery, vol. 13, pp. 1378-1384, Oct. 1998.
[28]G. Ledwich and A. Ghosh, “A Flexible DSTATCOM Operating in Voltage or Current Control Mode,” IEE Proceedings-Generation, Transmission, and Distribution, vol. 149, pp. 215-224, Mar. 2002.
[29]G. Escobar, A. M. Stankovic, and P. Mattavelli, “An Adaptive Controller in Stationary Reference Frame for D-STATCOM in Unbalanced Operation,” IEEE Transactions on Industrial Electronics, vol. 51, pp. 401-409, Apr. 2004.
[30]C. T. Chang and Y. Y. Hsu, “Design of UPFC Controllers and Supplementary Damping Controller for Power Transmission Control and Stability Enhancement of a Longitudinal Power System,” IEE Proceedings-Generation, Transmission, and Distribution, vol. 149, pp. 463-471, July 2002.
[31]H. F. Wang and F. Li, “Multivariable Sampled Regulators for the Co-ordinated Control of STATCOM AC and DC Voltage,” IEE Proceedings-Generation, Transmission, and Distribution, vol. 147, pp. 93-98, Mar. 2000.
[32]P. Garica-Gonzalez and A. Garia-Cerrada, “Control System for a PWM-based STATCOM,” IEEE Transactions on Power Delivery, vol. 15, pp. 1252-1257, Oct. 2000.
[33]C. Hochgraf and R. H. Lasseter, “STATCOM Controls for Operation with Unbalanced Voltages,” IEEE Transactions on Power Delivery, vol. 13, pp. 538-544, Apr. 1998.
[34]P. W. Lehn and M. R. Iravani, “Experimental Evaluation of STATCOM Closed Loop Dynamics,” IEEE Transactions on Power Delivery, vol. 13, pp. 1378-1384, Oct. 1998.
[35]P. S. Sensarma, K. R. Padiyar, and V. Ramanarayanan, “Analysis and Performance Evaluation of a Distribution STATCOM for Compensating Voltage Fluctuations,” IEEE Transactions on Power Delivery, vol. 16, pp. 259-264, Apr. 2001.
[36]L. Xu, V. G. Agelidis, and E. Acha, “Development Considerations of DSP-controlled PWM VSC-based STATCOM,” IEE Proceedings-Electric Power Applications, vol. 148, pp. 449-455, Sep. 2001.
[37] I. Papic, P. Zunko, D. Povh, and M. Weinhold, “Basic Control of Unified Power Flow Controller,” IEEE Transactions on Power Systems, vol. 12, pp. 1734-1739, Nov. 1997.
[38]H. Johan and S. V. Frederik, “Voltage Harmonics Generated by Voltage-fed Inverters using PWM Natural Sampling,” IEEE Transactions on Power Electronics, vol. 3, pp. 297-302, July 1988.
[39]P. W. Lehn, “Exact Modeling of the Voltage Source Converter,” IEEE Transactions on Power Delivery, vol. 17, pp. 217-222, Jan. 2002.
[40]M. Mohaddes, A. M. Gole, and S. Elez, “Steady State Frequency Response of STATCOM,” IEEE Transactions on Power Delivery, vol. 16, pp. 18-23, Jan. 2001.
[41]A. R. Wood and C. M. Osauskas, “A Linear Frequency-domain Model of a STATCOM,” IEEE Transactions on Power Delivery, vol. 19, pp. 1410-1418, July 2004.
[42]H. S. Black, Modulation Theory, D. Van Nostrand, New York, 1953.
[43]A. R. Bergen and V. Vittal, Power System Analysis, Prentice-Hall, 2nd ed., 2000.
[44]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converter, Applications, and Design, John Wily & Sons Inc., New York, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top