跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林事乾
研究生(外文):Shih-Chian Lin
論文名稱:利用非均勻取樣不穩定信號並重建
論文名稱(外文):Reconstruction of Non-uniformly Sampled Non-stationary Signals
指導教授:貝蘇章
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:非均勻取樣信號重建
外文關鍵詞:Non-uniform sampling TheorySignal Reconstruction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用信號的非均勻取樣點來重建它,在很多應用上是個重要的議題,尤其是在處理非頻帶限制(non-band-limited)的信號。我們引用Brueller et al. [6] 所提出之疊代演算法,對信號做時頻分析並有效地估測其瞬時頻寬,進而利用此結果,在使原信號變成頻帶限制的情況下,計算出時間軸的變形函數,並可重組原信號。根據這技術,此變形函數是累加的,每次疊代以補償和前一次的瞬時頻寬之不同為目標,最後這演算法會收斂並且在變形的時間軸上得到一個固定的瞬時頻寬。而此法在觀念上是最佳,因為它是利用最小取樣率來正確地重建信號,即在含有低頻成份的區域,則用較小的取樣密度,反之亦然。
In many applications, it is an important task to reconstruct a signal from their samples at non-uniformly distributed instants, especially in processing a non-band-limited signal. We refer to an iterative algorithm proposed by Brueller et al. [6]. This method is based on time-frequency analysis to availably estimate instantaneous bandwidth, further uses the result to calculate the time-distortion function, under which the original signal becomes band-limited and thus can be reconstructed. According to this approach, the time-distortion function is accumulated, and each iteration is aimed at compensating for differences in the instantaneous bandwidth after previous iteration. The final results of this algorithm converge to a constant instantaneous bandwidth over the distorted time axis. This method is optimal in the sense that it requires the minimal sampling rate for correct reconstruction of the signal. In other hand, it needs lower sampling density in the regions where there are low frequency components than in the other regions where there are higher frequency components and vice versa.
Chapter 1 Introduction ……………………………… 1

Chapter 2 Sampling Theorem ……...……………….. 5
2-1 Introduction………………………………………………………………….5
2-2 Sampling Theorem…………………………………………………………..6
2-3 Time-Distortion Function…………………………………………………..10
2-4 Conclusion……………………………….…………………………………11

Chapter 3 Spectrum Estimation …………………....13
3-1 Introduction………………………………………………………….……..13
3-2 Limits of the typical Fourier Transform……………………………………14
3-3 Typical Time-Frequency Representations………………………………….17
3-4 Instantaneous Bandwidth…………………………………………………..24
3-5 Conclusion………………………………………………………………….26

Chapter 4 The Iterative Algorithm .……………….. 27
4-1 Introduction………………………………………………………………..27
4-2 Algorithm…………………………………………………………………..28
4-3 Error Analysis……………………………………………………………...31

Chapter 5 Experiment ……………..……………..... 33
5-1 Introduction………………………………………………………………..33
5-2 Example 1: A Cosine Wave of a Step Frequency………………………….34
5-3 Example 2: A FM signal…………………………………………………..,43
5-4 Example 3: An Audio signal……………………………………………….51
5-5 Conclusion…………………………………………………………………56

Chapter 6 Conclusion and Feature Work ……........ 59
6-1 Conclusion………………………………………………………………....59
6-2 Feature Work……………………………………………………………....60

Reference ……............................................................. 61
[1]M, Akay, “Time frequency and wavelets in biomedical signal processing”, IEEE Press, 1998.
[2] A. W. Rihaczek, “Signal Energy Distribution in Time and Frequency”, IEEE Transactions on Information Theorem, Vol. IT-14, No.3, pp. 369-374, 1968.
[3] T.A.C.M. Classen and W.F.G. Mecklenbrauker, “The Wigner distribution – A
tool for time-frequency signal analysis: Part 1: Continuous time signals”,
Philips J. Res., Vol. 35, 1980, pp. 217-250.
[4] F. Hlawatsch, G.F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations”, IEEE Signal Proc. Mag., vol 9, April 1992. –P. 21-67.
[5] S.M. Marple, “Digital spectral analysis with applications”, Prentice-Hall, 1987.
[6] N. N. Brueller, N. Peterfreund and M. Porat, “Optimal Non-uniform Sampling
and Instantaneous Bandwidth Estimation”, Proc. Of the IEEE-SP International
Symposium on Time-Frequency and Time-Scale Analysis, Pittsburgh, USA, 6-9
Oct 1998. –P. 21-67.
[7] K. Horiuchi, “Sampling Principle for Continuous Signals with Time-Varying Bands”, Information and Control, vol. 13, pp. 53-61, 1968.
[8]A. J. Jerri, “The Shannon sampling theorem-Its various extensions and applications: A tutorial review”, Proc. IEEE, vol. 65, pp. 1565-1596, Nov. 1977.
[9] D. Gabor, “Theory of communication,” J. IEE (London), vol. 93, pp. 429-457,
1946.
[10]A. Francos and M. Porat, “Parametric Estimation of multicomponent Signals using Minimum Cross Entropy Time-Frequency Distributions”, Proceedings of IEEE International symposium on Time-Frequency and Time-Scale Analysis, pp. 321-324, Paris, France, 1996.
[11]R. Vio, W. Wamsteker, “Joint Time-Frequency Analysis: A tool for exploratory analysis and filtering of non-stationary time series”, Astron. Astrophys. 388, 1124 (2002)
[12] M. A. Poletti “The Development of Instantaneous Bandwidth via Local Signal Expansion”, Signal Processing, Vol. 31, pp. 273-281, 1993.
[13] L. Cohen, “Time-Frequency distributions – A review”, Proc. IEEE, Vol. 77, No. 7, July 1989, pp. 941-981.
[14] J. J. Clark, M. R. Palmer and P. D. Lawrence, “A Transformation Method for the reconstruction of Functions from Non-uniformly Spaced samples”, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-33, No. 4, pp. 1151-1165, 1985.
[15] M. Greitāns, “Advanced Processing of Non-uniformly Sampled Non-Stationary Signals”, Electronics and Electrical Engineering.–Kaunas: Technologija, 2005. – No. 3(59). – P. 42–45.
[16] L. Cohen and C. Lee, “Instantaneous bandwidth for signals and spectrogram”,
IEEE Internat. Conf. Acoust. Speech Signal Process., 1990, pp.2451-2454.
[17] L. Cohen and C. Lee, “Instantaneous mean quantities in time-frequency
analysis”, IEEE Internat. Conf. Acoust. Speech Signal Process., 1988, pp. 2188-2191.
[18]L. Cohen, “Local bandwidth and optimal windows for the short-time Fourier Transform”, Proc. SPIE Adv. Signal Process. IV, vol. 1152, pp. 401-425.
[19] C. K. Chui, “Wavelet Analysis and its Applications”, Boston, MA: Academic Press, 1992.
[20] A. Papoulis, “Error analysis in sampling theory”, Proc. of the IEEE, vol. 54, pp. 947-955, 1966
[21] L. Cohen and C. Lee, “Instantaneous frequency, its standard deviation and Multi-component signals”, Proc. SPIE, Vol. 1975, 1988, pp. 186-208.
[22] L. Cohen, “Time-Frequency Analysis”, Englewood Cliffs, NJ: Prentice-Hall, 1995.
[23] L. Cohen, “Standard deviation of instantaneous frequency”, in Proc. ICASSP, vol. 4, 1989, pp. 2238-2241.
[24] Y. Y. Zeevi and E. Shlomot, “Non-uniform Sampling and Anti-Aliasing in Image Representation”, IEEE Trans. On Signal Processing, vol. 41, pp. 1223-1236, 1993.
[25] S. Urieli, M. Porat and N. Cohen, “Optimal Reconstruction of Images from Localized Phase”, IEEE Trans. On Image Processing, vol. 7, No. 6, pp. 838-853, 1998.
[26] M. Porat and G. Shachor, “Signal Representation in the combined Phase-Spatial space: Reconstruction and Criteria for Uniqueness”, IEEE Trans. On Signal Processing, vol. 47, No. 6, pp. 1701-1707, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文