|
[1] C. C. Aggarwal. On change diagnosis in evolving data streams. IEEE Trans. On Knowledge and Data Engineering, 17(5):587—600, 2005. [2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In Proc. of VLDB, Sep. 2003. [3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high dimensional data streams. In Proc. of VLDB, pages 852—863, 2004. [4] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. On demand classification of data streams. In Proc. of ACM SIGKDD, pages 503—508, 2004. [5] C. C. Aggarwal, C. Procopiuc, J. L.Wolf, P. S. Yu, and J.-S. Park. Fast algorithms for projected clustering. In Proceedings of ACM SIGMOD, 1999. [6] C. C. Aggarwal and P. S. Yu. Online analysis of community evolution in data streams. In Proc. of ACM SIAM on Data Mining (SDM05), 2005. [7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. In Proc. of PODS, June 2002. [8] S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by seeding. pages 19—26, 2002. [9] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, NY, 1981. [10] P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained K-Means Clustering. MSRTR-2000-65, Microsoft Research, May 2000. [11] P. S. Bradley and U. Fayyad. Refining initial points for k—means clustering. In Proc. of ICML, pages 91—99, July 1998. [12] A. G. Buchner and M. Mulvenna. Discovery internet marketing intelligence through online analytical web usage mining. In ACM SIGMOD Record, volume 27(4), pages 54—61, Dec. 1998. [13] A. Bulut and A. K. Singh. Swat: Hierarchical stream summarization in large networks. In Proc. of ICDE, pages 303—314, Mar. 2003. [14] A. Bulut and A. K. Singh. A unified framework for monitoring data streams in real time. In Proc. of ICDE, pages 44—55, 2005. [15] J. H. Chang and W. S. Lee. estWin: Adaptively Monitoring the Recent Change of Frequent Itemsets over Online Data Streams. In Proceedings of ACM CIKM, 2003. [16] M.-S. Chen, J. Han, and P. S. Yu. Data mining: An overview from database perspective. IEEE Trans. On Knowledge And Data Engineering, 5(1):866—883, Dec. 1996. [17] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-dimensional regression analysis of time-series data streams. In Proc. of VLDB, 2002. [18] Y. Chi, H.Wangt, P. Yu, and R.Muntz. Moment: Maintaining Closed Frequent Itemsets Over a Stream Sliding Window. In Proceedings of IEEE ICDM, 2004. [19] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and Mining Inverse Distributions on Data Streams via Dynamic Inverse Sampling. In Proceedings of VLDB, 2005. [20] P. Crescenzi and V. Kann. A compendium of np optimization problems [http://www.nada.kth.se/ viggo/problemlist/compendium.html]. [21] B.-R. Dai, J.-W. Huang, M.-Y. Yeh, and M.-S. Chen. Clustering on demand for multiple data streams. In Proc. of ICDM, pages 367—370, 2004. [22] B.-R. Dai, C.-R. Lin, and M.-S. Chen. Constrained data clustering by depth control and progressive constraint relaxation. to appear in Very Large Data Base Journal (VLDB J). [23] B.-R. Dai, C.-R. Lin, and M.-S. Chen. On the techniques for data clustering with numerical constraints. In Proc. of SDM, 2003. [24] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. In Proc. of SODA, pages 635—644, Jan. 2002. [25] A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi. Processing complex aggregate queries over data streams. In Proc. of ACM SIGMOD, pages 61—72, June 2002. [26] P. Domingos and G. Hulten. Mining high-speed data streams. In Proc. of ACM SIGKDD, pages 71—80, Aug. 2000. [27] R. C. Dubes. How many clusters are best? - an experiment. Pattern Recognition, 20(6):645—663, 1987. [28] V. Estivill-Castro and I. Lee. Autoclust+:automatic clustering of point-data sets in the presence of obstacles. In Proc. of TSDM, pages 133—146, 2000. [29] W. Fan. Systematic data selection to mine concept-drifting data streams. In Proc. of ACM SIGKDD, pages 128—137, 2004. [30] W. Fan, Y. an Huang, and P. Yu;. Decision Tree Evolution Rsing Limited Number of Labeled Data Items from Drifting Data Streams. In Proceedings of IEEE ICDM, 2004. [31] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurasamy. Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge, MA, 1996. [32] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams. In Proc. of FOCS, pages 359—366, Nov. 2000. [33] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000. [34] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. DIMACS, 50:107—118, 1999. [35] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley Longman Publ. Co., Inc., Reading, MA., 1991. [36] W. Huang, E. Omiecinski, and L. Mark. Compression Schemes for Differential Categorical Stream Clustering. In Proceedings of ACM CIKM, 2004. [37] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In Proc. of ACM SIGKDD, pages 97—106, Aug. 2001. [38] V. S. Iyengar. On detecting space-time clusters. In Proceedings of ACM KDD, 2004. [39] H. V. Jagadish, J. Madar, and R. T. Ng. Semantic compression and pattern extraction with fascicles. In Proc. of VLDB, pages 186—198, 1999. [40] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamically Maintaining Frequent Items over a Data Stream. In Proceedings of ACM CIKM, 2003. [41] T. Johnson, S. Muthukrishnan, and I. Rozenbaum:. Sampling algorithms in a stream operator. In Proc. of ACM SIGMOD Conference, 2005. [42] E. Keogh, J. Lin, andW. Truppel. Clustering of time series subsequences is meaningless: Implications for past and future research. In Proc. of ICDM, Nov. 2003. [43] B. King. Step-wise clustering procedures. J. Am. Stat. Assoc., 69:86—101, 1967. [44] D. Klein, S. D. Kamvar, and C. Manning. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In Proceedings of the The Nineteenth International Conference on Machine Learning (ICML-2002), Sydney, Australia, 2002. [45] T. Li, Q. Li, S. Zhu, and M. Ogihara. A survey on wavelet applications in data mining. SIGKDD Explorations, 4(2):49—68, 2002. [46] C.-R. Lin and M.-S. Chen. A robust and efficient clustering algorithm based on cohesion self-merging. In Proc. of ACM SIGKDD, pages 582—587, July 2002. [47] C.-R. Lin and M.-S. Chen. On the optimal clustering of sequential data. In Proceedings of the 2nd SIAM International Conference on Data Mining, April 2002. [48] C.-R. Lin, K.-H. Liu, and M.-S. Chen. Dual clustering: Integrating data clustering over optimization and constraint domains. IEEE Trans. On Knowledge and Data Engineering, 17(5):628—637, May 2005. [49] S. Y. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for pattern analysis. IEEE Trans. Syst. Man Cybern, 8:381—389, 1978. [50] G. S. Manku and R. Motwani. Approximate frequency counts over streaming data. In Proc. of VLDB, pages 346—357, Aug. 2002. [51] O. Nasraoui, C. Uribe, C. Coronel, and F. Gonzalez. TECNO-STREAMS: Tracking Evolving Clusters in Noisy Data Streams With a Scalable Immune System Learning Model. In Proceedings of IEEE ICDM, 2003. [52] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In Proc. of VLDB, 1994. [53] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data algorithms for high-quality clustering. In Proc. of ICDE, 2002. [54] Y.-J. Oyang, C.-Y. Chen, and T.-W. Yang. A study on the hierachical data clustering algorithm based on gravity theory. In Proceedings of 5th European Conference on Principles and Practice of Knowledge Discovery in Databases, pages 350—361, 2001. [55] C. R. Palmer and C. Faloutsos. Density biased sampling: An improved method for data mining and clustering. In ACM SIGMOD International Conference on Management of Data, 2000. [56] L. Qiao, D. Agrawal, and A. E. Abbadi. RHist: Adaptive Summarization over Continuous Data Streams. In Proceedings of ACM CIKM, 2002. [57] K. Rose, E. Gurewitz, and G. Fox. Constrained clustering as an optimization method. IEEE Transactions On Pattern Analysis and Machine Intelligence, 15(8):785—794, Aug. 1993. [58] P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy. Freeman, London, UK, 1973. [59] W.-G. Teng, M.-S. Chen, and P. S. Yu. A regression-based temporal pattern mining scheme for data streams. In Proc. of VLDB, Sep. 2003. [60] W.-G. Teng, M.-S. Chen, and P. S. Yu. Using wavelet-based resource-aware mining to explore temporal and support count granularities in data streams. In Proc. of SDM, Apr. 2004. [61] A.K.H. Tung, J. Han, L. V. S. Lakshmanan, andR. T. Ng. Constraint-based clustering in large databases. In Proceedings of 2001 International Conference on Database Theory, Jan. 2001. [62] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering in the presence of obstacles. In Proc. of ICDE, pages 359—367, 2001. [63] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained K-Means clustering with background knowledge. 2001. [64] K.-L. Wu, S.-K. Chen, and P. S. Yu. Interval Query Indexing for Efficient Stream Processing. In Proceedings of ACM CIKM, 2004. [65] J. Yang. Dynamic clustering of evolving streams with a single pass. In Proc. of ICDE03, Mar. 2003. [66] M. Yeung and B. Yeo. Time-constrained clustering for segmentation of video into story units. In International Conference on Pattern Recognition, pages 375—380, May 1996. [67] O. R. Zaïane, A. Foss, C.-H. Lee, andW.Wang. On data clustering analysis: Scalability, constraints, and validation. In PAKDD, pages 28—39, 2002. [68] D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger. Temporal aggregation over data streams using multiple granularities. In Proc. of EDBT, pages 646—663, Mar. 2002. [69] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large database. In Proceedings of the ACM SIGMOD Conference on Management of Data, pages 103—114, 1996. [70] X. Zhu, X. Wu, and Y. Yang. Dynamic Classifier Selection for Effective Mining from Noisy Data Streams. In Proceedings of IEEE ICDM, 2004.
|